Report authorship and production team
Coordinating lead authors and editorial team
John M Clarke, Blair Trewin, Thomas Moore and Lynette Bettio
Project support
Colette Leary
Section lead authors
Pep Canadell, Andrew Dowdy, Michael Grose, Benoit Legresy, Zoë Loh, Bea Peña-Molino, Jannatun Nahar, Acacia Pepler, Hamish Ramsay, Phil Reid, Claire Spillman, Bronte Tilbrook, Blair Trewin and Xuebin Zhang.
Section contributing authors
Chris Chapman, John Clarke, Nada Derek, Catia Domingues, David Etheridge, Ming Feng, Ben Hague, Pandora Hope, Paul Krummel, Kathy McInnes, Didier Monselesan, Thomas Moore, Sugata Narsey, Rob Smalley and Gen Tolhurst.
Communications
Chris Gerbing, Sharon Cooper, Carla Howarth, Sue Manniche, and Sally Ling.
Graphic design
Siobhan Duffy
Citation
This document should be cited as:
State of the Climate 2022, CSIRO and Bureau of Meteorology, © Government of Australia.
References, further reading and notes
Many sections in this report draw on the Working Group I part of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, released in 2021 (hereafter referred to as IPCC AR6). Specific IPCC assessment findings or material used are cited in the individual sections below.
The full citation for the IPCC report is:
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
General climate information
Blunden, J. and T. Boyer, Eds., 2022: “State of the Climate in 2021”. Bull. Amer. Meteor. Soc., 103(8), Si–S465
CSIRO and Australian Bureau of Meteorology 2015, ‘Climate Change in Australia’, Climate Change in Australia
Bulletin of the American Meteorological Society. 'Explaining Extreme Events from a Climate Perspective’
World Meteorological Organization WMO ‘Statement on the Status of the Global Climate'
Fourth US National Climate Assessment, Nov 2018
Australian Bureau of Meteorology Climate Information
Australian Bureau of Meteorology Water Information
Kennaook/Cape Grim greenhouse gas data
CSIRO Oceans and Atmosphere: Sea-level data, Sea-Level Rise
National Snow and Ice Data Centre
NOAA Global greenhouse gas reference network
WMO Status of the Global Observing System for Climate
Report at a Glance
Huang, B., Thorne, P.W., Banzon, V.F. et al. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations and intercomparisons. J. Climate, 30, 8179-8205.
Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R. and Webb, V. (2020). An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149-169.
Australian temperature data used in figures in this section are drawn from version 2.3 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020).
Sea surface temperature data are drawn from version 5 of the Extended Reconstructed Sea Surface Temperature (ERSSTv5) dataset (Huang et al., 2017).
The figure showing global temperatures is adapted and updated from Figure 4 in the World Meteorological Organization (WMO) Statement on the Status of Global Climate in 2012. Global temperature data used are a mean of four different global data sets as described in IPCC AR6 Section 2.3.1.1.3 and Table 2.3.
The Oceanic Nino Index (ONI) is defined as the three-month mean of ERSSTv5 sea surface temperature anomalies in the Niño 3.4 region (5 °N to 5 °S, 120 °W to 170 °W), based on a rolling 30-year base period updated every 5 years. Moderate and strong El Niño (La Niña) events in this figure are defined as those where the NOAA Oceanic Niño Index is +1.2 °C or above (−1.2 °C or below) in at least one three-month period during the 12 months from July to June, with weak events being those which do not meet that criterion. Based on data from the World Meteorological Organization.
Citations for key points are in the associated sections below.
Australia’s changing climate
Temperature
Dittus, A.J., Karoly, D.J., Lewis, S.C. and Alexander, L.V. (2014). An investigation of some unexpected frost day increases in southern Australia. Aust. Met. Oceanogr. J., 64, 261-271.
Grainger, S., Fawcett, R., Trewin, B., Jones, D., Braganza, K., Jovanovic, B., Martin, D., Smalley, R. and Webb, V. (2022). Estimating the uncertainty of Australian area-average temperature anomalies. Int. J. Climatol., 42, 2815-2834.
Nairn, J.R. and Fawcett, R.J.B. (2015). The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Heath, 12, 227-253.
Pepler, A., Ashcroft, L. and Trewin, B. (2018). The relationship between the subtropical ridge and Australian temperatures. J. South. Hem. Earth Sys. Sci., 68, 201-214.
Trewin, B. (2018). The Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) version 2. Bureau Research Report 32, Bureau of Meteorology.
Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R. and Webb, V. (2020). An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149-169.
Australian temperature data used in this section are drawn from version 2.3 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020).
Fire weather
Canadell, J.G., Haverd, V.E., Smith, B., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G.D., Woodgate, W., Briggs, P. and Trudinger, C.M. (2018, December). Higher than expected CO2 fertilisation inferred from leaf to global observations. In AGU Fall Meeting Abstracts.
Canadell, J.G., Meyer, C.P., Cook, G.D., Dowdy, A., Briggs, P.R., Knauer, J., Pepler, A. and Haverd, V. (2021). Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature communications, 12(1), pp.1-11.
Clarke, H., Pitman, A.J., Kala, J., Carouge, C., Haverd, V. & Evans, J. (2016). An investigation of future fuel load and fire weather in Australia. Climatic Change, 139 (3), 591-605.
Di Virgilio, G., Evans, J.P., Blake, S.A., Armstrong, M., Dowdy, A.J., Sharples, J. and McRae, R. (2019). Climate change increases the potential for extreme wildfires. Geophysical Research Letters, 46(14), pp.8517-8526.
Dowdy, A.J., Fromm, M.D. and McCarthy, N. (2017). Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research: Atmospheres, 122(14), pp.7342-7354.
Dowdy, A.J. (2018). Climatological Variability of Fire Weather in Australia. Journal of Applied Meteorology and Climatology, 57, 221-234.
Dowdy, A.J. and Pepler, A. (2018). Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions. Geophysical Research Letters, 45, 2005-2013.
Dowdy, A.J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S.L., Evans, J.P., Di Virgilio, G. and McCarthy, N. (2019). Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports, 9(1), 1-11.
Dowdy, A.J. (2020). Seamless climate change projections and seasonal predictions for bushfires in Australia. Journal of Southern Hemisphere Earth Systems Science, 70(1), pp.120-138.
Harris, S. and Lucas, C. (2019). Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE, 14.
McArthur, A.G. (1967). Fire behaviour in eucalypt forests. Australia. Forestry and Timber Bureau : Leaflet ; no. 107, Forestry and Timber Bureau, 36.
Van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, N.J., Lehner, F., Saunders, K.R., Van Weele, M., Haustein, K., Li, S., Wallom, D. and Sparrow, S. (2021). Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21(3), pp.941-960.
The figure is updated and adapted from Dowdy (2020).
Rainfall
Evans, A., Jones, D., Smalley, R. and Lellyett, S. (2020). An enhanced gridded rainfall analysis scheme for Australia. Bureau Research Report 41, Bureau of Meteorology.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302.
Rauniyar, S.P. and Power, S.B. (2020). The impact of anthropogenic forcing and natural processes on past, present and future rainfall over Victoria, Australia. J. Climate, 33, 8087-8106.
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034.
Rainfall data used in this section are drawn from the Australian Gridded Climate Data (AGCD) dataset (Evans et al., 2020).
Box: changes in weather systems and climate drivers
Abram, N.J., Hargreaves, J.A., Wright, N.M., Thirumalai, K., Ummenhofer, C.C. and England, M.H. (2020). Palaeoclimate perspectives on the Indian Ocean Dipole. Quart. Sci. Rev., 237, 106302.
Grose, M., Timbal, B., Wilson, L., Bathols, J. and Kent, D. (2015). The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Met. Oceanogr. J., 65, 90-106.
Pepler, A., Hope, P. and Dowdy, A. (2019). Long-term changes in southern Australian anticyclones and their impacts. Clim. Dyn, 53, 4701-4714.
Pepler, A. (2020). Record lack of cyclones in Australia during 2019. Geophys. Res. Lett., 47, e2020GL088488.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302.
Pepler, A.S. and Dowdy, A.J. (2022). Australia’s future extratropical cyclones. J. Climate, published online 26 August 2022.
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034.
The assessment of changes in climate drivers draws on the assessment findings of IPCC AR6: sections 2.4.1.2 (SAM), 2.4.2 (ENSO) and 2.4.3 (IOD).
Heavy rainfall
Bao, J., Sherwood, S.C., Alexander, L.V. and Evans, J.P. (2017). Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Chang., 7, 128–132.
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052.
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808. .
Pearce, K.B., Holper, P.N., Hopkins, M., Bouma, W.J., Whetton, P.H., Hennessy, K.J. and Power, S.B. (2007). Climate Change in Australia: technical report 2007.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Climate Dynamics, 56(7), pp.2289-2302.
Box: extreme rainfall and flood risk
Callaghan, J. and Power, S.B. (2011). Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim. Dyn., 37, 647-662.
Chand, S.S., Dowdy, A.J., Ramsay, H.A. et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdisciplinary Reviews: Climate Change.
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052.
Dowdy, A.J., Pepler, A., Di Luca, A. et al. (2019). Review of Australian east coast low pressure systems and associated extremes. Climate Dynamics.
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808.
Johnson, F., White, C.J., van Dijk, A., Ekstrom, M., Evans, J.P., Jakob, D., Kiem, A.S., Leonard, M., Rouillard, A. and Westra, S. (2016). Natural hazards in Australia: floods. Climatic Change, 139(1), 21-35.
Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007.
Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2020). Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101 (3): E303–E322.
NESP (2020). Scenario analysis of climate-related physical risk for buildings and infrastructure: climate science guidelines. NESP Earth Systems and Climate Change (ESCC) Hub report for the Climate Measurement Standards Initiative, 116 pp.
Streamflow
Amirthanathan, G., Bari, M., Woldemeskel, F., Tuteja, N. and Feikema, P. (2022). Regional significance of historical trends and step changes in Australian streamflow. Hydrol. Earth Syst. Sci. Discuss. [preprint], in review, 2022.
Bureau of Meteorology (2020). Trends and historical conditions in the Murray-Darling Basin: a report prepared for the Murray-Darling Basin Authority by the Bureau of Meteorology. Available here.
Hamed, K.H. and Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196.
Hu, Z., Liu, S., Zhong, G., Lin, H. and Zhou, Z. (2020). Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrological Sciences Journal, 65(14), 2419-2438.
Turner, M. (2012). Hydrologic Reference Station selection guidelines. Bureau of Meteorology.
The analysis draws on data from all available Australian streamflow stations with sufficient data. A subset of this is the set of Hydrologic Reference Stations.
Details of Australia’s Topographic Drainage Divisions are available here.
Tropical cyclones
Chand, S.S., Dowdy, A.J., Ramsay, H.A. et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. WIREs Clim Change, 10:e602.
Chand, S.S., Walsh, K.J.E., Camargo, S.J. et al. (2022). Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 12, 655–661.
Dowdy, A.J. (2014). Long-term changes in Australian tropical cyclone numbers. Atmos. Sci. Lett., 15: 292-298.
Kossin, J.P., Knapp, K.R., Olander, T.L. and Velden, C.S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of National Academy of Sciences of the United States of America, 117(22), 11975– 11980.
Nicholls, N. (1984). The southern oscillation, sea-surface temperature, and internannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661–670,
Ramsay, H.A., Leslie, L.M., Lamb, P.J., Richman, M.B. and Leplastrier, M. (2008). Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment, Journal of Climate, 21(5), 1083-1103.
Snowfall
Pepler, A.S., Trewin, B. and Ganter, C. (2015). The influence of climate drivers on the Australian snow season. Aust. Met. Oceanogr. J., 65, 195-205.
Snow depth data for Spencers Creek are sourced from Snowy Hydro.
Oceans
Sea surface temperature
Benthuysen, J.A., Oliver, E.C.J., Chen, K. and Wernberg, T. (2020). Editorial: advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7:147.
Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S. and Zhang, H-M. (2017). NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information. doi:10.7289/V5T72FNM.
Feng, M., Caputi, N., Chandrapavan, A., Chen, M., Hart, A. and Kangas, M. (2021). Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. Journal of Marine Systems, 214, 103473.
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C.J., Benthuysen, J., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S. and Wernberg, T. (2016a). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238.
Hu, S. and Fedorov, A.V. (2017). The extreme El Niño of 2015–2016 and the end of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824.
Kajtar, J.B., Holbrook, N.J. and Hernaman, V. (2021). A catalogue of marine heatwave metrics and trends for the Australian region. Journal of Southern Hemisphere Earth Systems Science, 71, 284–302.
Vanderklift, M.A., Babcock, R.C., Barnes, P.B., Cresswell, A.K., Feng, M., Haywood, M.D., Holmes, T.H., Lavery, P.S., Pillans, R.D., Smallwood, C.B. and Thomson, D.P. (2020). The oceanography and marine ecology of Ningaloo, a world heritage area. In Oceanography and Marine Biology. Taylor & Francis.
Wu, L., Cai, W., Zhang, L. et al. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Clim Change 2, 161–166.
Ocean heat content
Liang, X., Liu, C., Ponte, R.M. and Chambers, D.P. (2021). A comparison of the variability and changes in global ocean heat content from multiple objective analysis products during the Argo period. Journal of Climate, 34(19), 7875-7895.
Cheng, L., Abraham, J., Trenberth, K.E., Fasullo, J., Boyer, T., Mann, M.E. et al. (2022). Another record: Ocean warming continues through 2021 despite La Niña conditions. Advances in Atmospheric Sciences, 39(3), 373-385.
Wang, L., Lyu, K., Zhuang, W., Zhang, W., Makarim, S. and Yan, X.H. (2021). Recent shift in the warming of the Southern Oceans Modulated by decadal climate variability. Geophysical Research Letters, 48(3), e2020GL090889.
Rathore, S., Bindoff, N.L., Phillips, H.E. and Feng, M. (2020). Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nature communications, 11(1), 1-8.
Bagnell, A. and DeVries, T. (2021). 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nature Communications, 12(1), 1-10.
Johnson, G.C. and Lyman, J.M. (2020). Warming trends increasingly dominate global ocean. Nature Climate Change, 10(8), 757-761.
Johnson, G.C., Cadot, C., Lyman, J.M., McTaggart, K.E. and Steffen, E.L. (2020). Antarctic bottom water warming in the Brazil Basin: 1990s through 2020, from WOCE to Deep Argo. Geophysical Research Letters, 47(18), e2020GL089191.
Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M.Z., Landerer, F.W., Stammer, D. et al. (2019). Measuring global ocean heat content to estimate the Earth energy imbalance. Frontiers in Marine Science, 6, 432.
Purkey, S.G., Johnson, G.C., Talley, L.D., Sloyan, B.M., Wijffels, S.E., Smethie, W. et al. (2019). Unabated bottom water warming and freshening in the South Pacific Ocean. Journal of Geophysical Research: Oceans, 124(3), 1778-1794.
Von Schuckmann, K., Cheng, L., Palmer, M.D., Hansen, J., Tassone, C., Aich, V. et al. (2020). Heat stored in the Earth system: where does the energy go?. Earth System Science Data, 12(3), 2013-2041.
Box: marine heatwaves and coral reefs
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C.J., Benthuysen, J., Burrows, M.T., Donat, M. G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S. and Wernberg, T. (2016a). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238.
Holbrook, N.J., Gupta, A.S., Oliver, E.C.J., Hobday, A.J., Benthuysen, J.A., Scannell, H.A., Smale, D.A. and Wernberg T. (2020). Keeping Pace with Marine Heatwaves as Oceans Warm. Nature Reviews Earth & Environment.
Spillman, C.M. and Smith, G.A. (2021). A new operational seasonal thermal stress prediction tool for coral reefs around Australia. Frontiers of Marine Science.
Spillman, C.M., Smith, G.A., Hobday, A.J. and Hartog, J.R. (2021). Onset and decline rates of marine heatwaves: global trends, seasonal forecasts and marine management. Frontiers of Climate.
Sea level
Agarwal, N., Jungclaus, J.H., Köhl, A., Mechoso, C.R. and Stammer, D. (2015). Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environmental Research Letters, vol. 10, no. 7, pp. 1–8.
Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S. and Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters, vol. 39, no. 19, p. L19602.
Burgette, R.J., Watson, C.S., Church, J.A., White, N.J., Tregoning, P. and Coleman, R. (2013). Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophysical Journal International, vol. 194, no. 2, pp. 719–736.
Cazenave, A., Meyssignac, B., Ablain, M., Balmaseda, M., Bamber, J., Barletta, V. et al. (2018). Global sea-level budget 1993-present. Earth System Science Data, 10(3), 1551–1590.
Chen, X., Zhang, X., Church, J.A., Watson, C.S., King, M.A., Monselesan, D., Legresy B. and Harig, C. (2017). The increasing rate of global mean sea-level rise during 1993-2014. Nature Climate Change 7, 492-495.
Church, J.A., Hunter, J.R., McInnes, K.L. and White, N.J. (2006). Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Met. Mag. 55 (2006) 253-260.
Church, J.A. and White, N.J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, vol. 32, no. 4-5, 585–602.
Fasullo, J.T., Boening, C., Landerer, F.W. and Nerem, R.S. (2013) Australia’s unique influence on global sea level in 2010-2011. Geophysical Research Letters, vol. 40, no. 16, 4368–4373.
Featherstone, W.E., Penna, N.T., Filmer, M.S. and Williams, S.D.P. (2015). Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 120(10), 7004–7014.
Hinkel, J., Church, J.A., Gregory, J.M., Lambert, E., Lowe J., McInnes, K.L., Nicholls, R.J., van der Pol, T.D. and van de Wal, R. (2019). Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth’s Future, 7(3), 320 – 327.
Hague, B.S., Murphy, B.F., Jones, D.A. and Taylor, A.J. (2019). Developing impact-based thresholds for coastal inundation from tide gauge observations. Journal of Southern Hemisphere Earth Systems Science, vol. 69, 252-272.
Hague, B.S, McGregor, S., Murphy, B.F., Reef, R. and Jones, D.A. (2020). Sea-Level Rise Driving Increasingly Predictable Coastal Inundation in Sydney, Australia. Earth’s Future.
Hague, B.S., Jones, D.A., Jakob, D., McGregor, S. and Reef, R. (2022). Australian coastal flooding trends and forcing factors. Earth’s Future, 10, e2021EF002483.
Honisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E. et al. The Geological Record of Ocean Acidification. Science, 2012; 335 (6072): 1058
IPCC AR6 Chapter 9
Jevrejeva, S., Moore, J.C., Grinsted, A. and Woodworth, P.L. (2008). Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters, vol. 35, no. 8, L08715.
Masters, D., Nerem, R.S., Choe, C., Leuliette, E., Beckley, B., White, N. and Ablain, M. (2012). Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2. Marine Geodesy, vol. 35, no. sup1, 20–41.
McInnes, K.L., Church, J.A., Monselesan, D., Hunter, J.R., O’Grady, J.G., Haigh, I.D. and Zhang, X. (2015). Information for Australian Impact and Adaptation Planning in response to Sea-level Rise, Australian Meteorological and Oceanographic Journal, 65:1, 127–149.
Ray, R.D. and Douglas, B.C. (2011). Experiments in reconstructing twentieth-century sea levels. Progress in Oceanography, vol. 91, no. 4, 496–515
Rignot, E., Velicogna, I., Van Den Broeke, M.R., Monaghan, A. and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, vol. 38, no. 5, p. L05503.
Royston, S., Watson, C.S., Legrésy, B., King, M.A., Church, J.A. and Bos, M.S. (2018). Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise. Journal of Geophysical Research: Oceans, 123(3), 1978–1993.
Slangen, A., Church, J., Agosta, C. et al. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Clim Change 6, 701–705.
Wang, J., Church, J.A., Zhang, X. et al. (2021). Reconciling global mean and regional sea level change in projections and observations. Nat Commun 12, 990.
Wang, J., Church, J.A., Zhang, X., Gregory, J.M., Zanna, L. and Chen, X. (2021). Evaluation of the local sea-level budget at tide gauges since 1958. Geophysical Research Letters, 48, e2021GL094502.
Watson, C.S., White, N.J., Church, J.A., King, M.A., Burgette, R.J. and Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, vol. 5, no. 6, 565–568.
White, N.J., Haigh, I.D., Church, J.A., Koen, T., Watson, C.S., Pritchard, T.R., Watson, P.J., Burgette, R.J., McInnes, K.L., You, Z.J., Zhang, X. and Tregoning, P. (2014). Australian sea levels-trends, regional variability and influencing factors. Earth-Science Reviews, vol. 136, 155-174.
Wijffels, S., Beggs, H., Griffin, C., Middleton, J., Cahill, M., King, E., Jones, E., Feng, M., Benthuysen, J., Steinberg, C., Sutton, P. (2018). A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): seasonal variability and trends around Australasia and New Zealand revisited. Journal of Marine Systems, Vol 87, 156-196.
Woolworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A. and Gehrels, W.R. (2008). Evidence for the accelerations of sea level on multi-decade and century timescales. International Journal of Climatology, 29(6), 777-789.
Zhang, X. and Church, J.A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701.
Zhang, X., Church, J.A., Monselesan, D. and McInnes, K.L. (2017). Sea level projections for the Australian region in the 21st century. Geophysical Research Letters, 44(16), 8481–8491.
Ocean acidification
Comeau, S., Cornwall, C.E., DeCarlo, T.M. et al. (2019). Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nature Climate Change 9, 477–483.
Doney, S.C., Busch, D.S., Cooley, S.R. and Kroeker, K.J. (2020). The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources 2020, 45:1, 83-112.
Fabricius, K.E., Neill, C., Van Ooijen, E., Smith, J.N. and Tilbrook, B. (2020). Progressive seawater acidification on the Great Barrier Reef continental shelf. Scientific Reports, 10(1).
Gregor, L. and Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth System Science Data, 13(2), 777–808.
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A. and Williams, B. (2012). The geological record of ocean acidification. Science (New York, N.Y.), 335(6072), 1058–1063.
Hurd, C.L., Lenton, A., Tilbrook, B. and Boyd, P.W. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change 8, 686–694.
IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Portner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp.
Jiang, L.-Q., Carter, B.R., Feely, R.A., Lauvset, S.K. and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 18624.
Lenton, A., Tilbrook, B., Matear, R.J., Sasse, T., Nojiri, Y. (2016). Historical reconstruction of ocean acidification in the Australian region. Biogeosciences, vol. 13, 1753-1765.
Mongin, M., Baird, M.E., Tilbrook, B., Matear, R.J., Lenton, A., Herzfeld, M. et al. (2016). The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 7, 10732.
Smith, J.N., Mongin, M., Thompson, A., Jonker, M.J., De’ath, G. and Fabricius, K. E. (2020). Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. Global Change Biology, 26(4), 2149–2160.
Sunday, J.M., Fabricius, K.E., Kroeker, K.J., Anderson, K.M., Brown, N.E., Barry, J.P. et al. (2017). Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 7(1), 81–85.
Sutton, A.J., Sabine, C.L., Feely, R.A., Cai, W.J., Cronin, M.F., McPhaden, M.J. et al. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083.
Tilbrook, B., Van Oiijen, E., Neill, C., Berry, K., Akl, J., Passmore, A., Black, J., Lenton, A. and Richardson, A. J. (2020). Ocean Acidification in State and Trends of Australia’s Ocean Report eds Richardson, A.J., Eriksen, R., Moltmann, T., Hodgson-Johnston, I., Wallis, J. R., Integrated Marine Observing System, Hobart
Cryosphere
Abram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J.R., Clarke, H., Dowdy, A.J. et al. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 8.
Cavalieri, D.J., Parkinson, C.L., Gloersen, P. and Zwally, H. J. (1996). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.
Hobbs, W.R., Massom, R., Stammerjohn, S., Reid, P., Williams, G. and Meier, W. (2016). A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143.
Kusahara, K., Reid, P., Williams, G.D., Massom, R. and Hasumi, H. (2018). An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environmental Research Letters, 13(8).
Liang, D., Guo, H., Zhang, L., Cheng, Y., Zhu, Q. and Liu, X. (2021). Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine. Remote Sensing of Environment, 256, 112318.
Lim, E.-P., Hendon, H.H., Butler, A.H., Thompson, D.W.J., Lawrence, Z.D., Scaife, A.A. et al. (2021). The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bulletin of the American Meteorological Society, 102(6), E1150–E1171.
Maslanik, J. and Stroeve, J. (1999). updated daily: Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations. National Snow and Ice Data Center, Boulder, CO, digital media. Retrieved here.
Massom, R.A., Scambos, T.A., Bennetts, L.G., Reid, P., Squire, V.A. and Stammerjohn, S.E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389.
Mazloff, M.R., Sallee, J.B., Menezes, V.V., Macdonald, A.M., Meredith, M.P., Newman, L. et al. (2017). Southern Ocean [in ’State of the Climate in 2016’]. Bulletin of the American Meteorological Society, 98(8), S166–S167.
Meehl, G.A., Arblaster, J.M., Chung, C.T.Y., Holland, M.M., DuVivier, A., Thompson, L. et al. (2019). Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10(1), 14.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A. et al. (2019). Polar Regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, … W. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Noble, T.L., Rohling, E.J., Aitken, A.R.A., Bostock, H.C., Chase, Z., Gomez, N. et al. (2020). The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 58(4), 1–89.
Owens, I. and Zawar-Reza, P. (2015). Weather and Climate. In D. Liggett, B. Storey, Y. Cook, & V. Meduna (Eds.), Exploring the Last Continent: An Introduction to Antarctica (pp. 91–114). Springer International Publishing.
Purich, A. and England, M.H. (2019). Tropical Teleconnections to Antarctic Sea Ice During Austral Spring 2016 in Coupled Pacemaker Experiments. Geophysical Research Letters, 46(12), 6848–6858.
Reid, P.A. and Massom, R.A. (2022). Change and variability in Antarctic coastal exposure, 1979–2020. Nature Communications, 13(1).
Reid, P.A., Stammerjohn, S., Massom, R.A., Barreira, S., Scambos, T. and Lieser, J. (2022). Antarctic Sea ice extent, concentration, and seasonality [in “State of the Climate in 2021”] (submitted). Bulletin of the American Meteorological Society.
Stammerjohn, S. and Maksym, T. (2017). Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In Sea Ice (pp. 261–289).
Teder, N., Bennetts, L., Reid, P. and Massom, R. (2022). Sea ice-free corridors for large swell to reach Antarctic ice shelves. Environmental Research Letters. Retrieved here.
van Ommen, T.D. and Morgan, V. (2010). Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nature Geoscience, 3(4), 267–272.
Vance, T.R., Roberts, J.L., Plummer, C.T., Kiem, A.S. and van Ommen, T.D. (2015). Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophysical Research Letters, 42(1), 129–137.
Wille, J.D., Favier, V., Dufour, A., Gorodetskaya, I.V, Turner, J., Agosta, C. and Codron, F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911–916.
Yuan, X., Kaplan, M.R. and Cane, M.A. (2018). The interconnected global climate system-a review of tropical-polar teleconnections. Journal of Climate, 31(15), 5765–5792.
The assessment of the contribution of ice sheet melting to global sea level rise draws from IPCC AR6 Table 9.5.
Data sources for the figures are as follows:
Figure 1. Sea-ice extent values are calculated from satellite passive-microwave ice concentration data obtained from the National Snow and Ice Data Center (Cavalieri et al. 1996, updated annually for 1979-2021, and Maslanik and Stroeve 1999 for 2022).
Figure 2. Duration values are calculated from satellite passive-microwave ice concentration data obtained from the National Snow and Ice Data Center (Cavalieri et al. 1996, updated annually for 1979-2021, and Maslanik and Stroeve 1999 for 2022).
Greenhouse Gases (including Global carbon budget)
Notes
Figure of emissions of three greenhouse gases in past 200 years (additional detail): Data in both panels are from in situ monitoring by CSIRO and the Bureau of Meteorology (commencing Kennaook/Cape Grim, Tasmania, 1976) and the Advanced Global Atmospheric Gases Experiment (global, including Kennaook/Cape Grim, commencing 1978) and from measurements of flask air samples (global, including Kennaook/Cape Grim, commencing 1992), the Kennaook/Cape Grim Air Archive (1978-2019) at the CSIRO GASLAB (Aspendale, Melbourne), and air from Antarctic firn (compacted snow) and ice cores measured at CSIRO GASLAB and ICELAB (Aspendale, Melbourne).
References
Derek, N., Krummel, P.B. and Cleland, S.J. (Eds) (2014). Baseline atmospheric program Australia 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research.
Etminan, M., Myhre, G., Highwood, E.J. and Shine, K.P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12,614-12,623.
Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, J.G. et al. (2022). Global Carbon Budget 2021. Earth System Science Data 14:1917-2005. https://doi.org/10.5194/essd-14-1917-2022
Global Carbon Project (2022). Global Carbon Budget 2021. Data accessed May 2022.
Gohar, L.K. and Shine, K.P. (2007). Equivalent CO 2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311.
Graven, H., Allison, C.E., Etheridge, D.M., Hammer, S., Keeling, R.F., Levin, I. et al. (2017). Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development, 10(12), 4405–4417.
IPCC AR6 Chapter 7
Jackson, R.B., Friedlingstein, P., Le Quere, C., Abernethy, S., Andrew, R.M., Canadell, J.G., Ciais, P., Davis, S.J. and Deng, Z. (2022). Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters 17: 031001.
Liu, Z., Deng, Z., Zhu, B. et al. (2022). Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. 15, 615–620.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D.M., Fraser, P.J., Montzka, S.A., Rayner, P.J., Trudinger, C.M., Krummel, P.B., Beyerle, U., Canadell, J.G., Daniel, J.S., Enting, I.G., Law, R.M., Lunder, C.R., O’Doherty, S., Prinn, R.G., Reimann, S., Rubino, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J. and Weiss, R. (2017), Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10(5), 2057-2116.
Krummel, P.B., Fraser, P.J., Steele, L.P., Derek, N., Rickard, C., Ward, J., Somerville, N.T., Cleland, S.J., Dunse, B.L., Langenfelds, R.L., Baly, S. and Leist, M.A. (2014). The AGAGE in situ program for non-CO2 greenhouse gases at Cape Grim, 2009-2010, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 56-70.
Langenfelds, R.L., Steele, L.P., Gregory, R.L., Krummel, P.B., Spencer, D.A. and Howden, R.T. (2014). Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 45-49.
Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R.J., Gomez-Pelaez, A.J., Steele, L.P., Wagenbach, D., Weller, R. and Worthy, D.E. (2010). Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus, Series B: Chemical and Physical Meteorology, vol. 62, no. 1, 26–46.
Le Quéré, C., Jackson, R.B., Jones, M.W., Smith, A.J.P., Abernethy, S., Andrew, R.M., De-Gol, A.J., Willis, D.R., Shan, Y., Canadell, J.G., Friedlingstein, P., Creutzig, F. and Peters, G.P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 10(7), 647-653.
Machida, T., Nakazawa, T., Fujii, Y., Aoki, S. and Watanabe, O. (1995). Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophysical Research Letters, vol. 22, no. 21, 2921–2924 [ED(A10].
Park, S., Croteau, P., Boering, K.A., Etheridge, D.M., Ferretti, D., Fraser, P.J., Kim, K.-R., Krummel, P.B., Langenfelds, R.L., van Ommen, T.D., Steele, L.P. and Trudinger, C.M. (2012). Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience, vol. 5, no. 4, 261–265.
Prinn, R.G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L. et al. (2018). History of Chemically and Radiatively Important Atmospheric Gases from the Advanced Global Atmospheric Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985-1018.
Rubino, M., Etheridge, D.M., Thornton, D.P., Howden, R., Allison, C.E., Francey, R.J., Langenfelds, R.L., Steele, L.P., Trudinger, C.M., Spencer, D.A., Curran, M.A.J., van Ommen, T.D. and Smith, A.M. (2019). Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492.
Saunois, M., Stavert, A.R., Poulter, B. et al. (2020). The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623.
Steele, P., Krummel, P., van der Schoot, M., Spencer, D., Baly, S., Langenfelds, R., Howden, R., Ward, J., Somerville, N. and Cleland, S. (2014). Baseline carbon dioxide monitoring. Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 39-41.
Sturrock, G.A., Etheridge, D.M., Trudinger, C.M., Fraser, P.J. and Smith, A.M. (2002). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species. Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–14.
Tian, H., Xu, R., Canadell, J.G. et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256.
Trudinger, C.M., Etheridge, D.M., Rayner, P.J., Enting, I.G., Sturrock, G.A. and Langenfelds, R.L. (2002). Reconstructing atmospheric histories from measurements of air composition in firn. Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–13.
Future climate
Knutson, T., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society101, 3, E303-E322, available here [Accessed 28 April 2022]
Information is drawn from the following IPCC reports, notably AR6:
Australian Bureau of Meteorology and CSIRO, 2022, State of the Climate 2022, 28pp.
- Future temperature and heat extremes: Chapter 11.3, Atlas 6.4 and Interactive Atlas.
- Rainfall and drought: Chapters 8.3, 8.4, 11.6, 12.4.3, Atlas 6.4 and Interactive Atlas
- Extreme rainfall: Chapters 8.3, 8.4, 11.4 and 12.4.3
- Tropical cyclones and storms: Chapters 11.7 and 12.3
- Coastal and marine: Box 9.2, Chapters 9.6, 12.3.5 and 12.4.3
- Compound events: 11.8, 12.4 and Special Report on the Ocean and Cryosphere in a Changing Climate, Chapter 6
Report authorship and production team
Coordinating lead authors and editorial team
John M Clarke, Blair Trewin, Thomas Moore and Lynette Bettio
Project support
Colette Leary
Section lead authors
Pep Canadell, Andrew Dowdy, Michael Grose, Benoit Legresy, Zoë Loh, Bea Peña-Molino, Jannatun Nahar, Acacia Pepler, Hamish Ramsay, Phil Reid, Claire Spillman, Bronte Tilbrook, Blair Trewin and Xuebin Zhang.
Section contributing authors
Chris Chapman, John Clarke, Nada Derek, Catia Domingues, David Etheridge, Ming Feng, Ben Hague, Pandora Hope, Paul Krummel, Kathy McInnes, Didier Monselesan, Thomas Moore, Sugata Narsey, Rob Smalley and Gen Tolhurst.
Communications
Chris Gerbing, Sharon Cooper, Carla Howarth, Sue Manniche, and Sally Ling.
Graphic design
Siobhan Duffy
Citation
This document should be cited as:
State of the Climate 2022, CSIRO and Bureau of Meteorology, © Government of Australia.
References, further reading and notes
Many sections in this report draw on the Working Group I part of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, released in 2021 (hereafter referred to as IPCC AR6). Specific IPCC assessment findings or material used are cited in the individual sections below.
The full citation for the IPCC report is:
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
General climate information
Blunden, J. and T. Boyer, Eds., 2022: “State of the Climate in 2021”. Bull. Amer. Meteor. Soc., 103(8), Si–S465
CSIRO and Australian Bureau of Meteorology 2015, ‘Climate Change in Australia’, Climate Change in Australia
Bulletin of the American Meteorological Society. 'Explaining Extreme Events from a Climate Perspective’
World Meteorological Organization WMO ‘Statement on the Status of the Global Climate'
Fourth US National Climate Assessment, Nov 2018
Australian Bureau of Meteorology Climate Information
Australian Bureau of Meteorology Water Information
Kennaook/Cape Grim greenhouse gas data
CSIRO Oceans and Atmosphere: Sea-level data, Sea-Level Rise
National Snow and Ice Data Centre
NOAA Global greenhouse gas reference network
WMO Status of the Global Observing System for Climate
Report at a Glance
Huang, B., Thorne, P.W., Banzon, V.F. et al. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations and intercomparisons. J. Climate, 30, 8179-8205.
Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R. and Webb, V. (2020). An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149-169.
Australian temperature data used in figures in this section are drawn from version 2.3 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020).
Sea surface temperature data are drawn from version 5 of the Extended Reconstructed Sea Surface Temperature (ERSSTv5) dataset (Huang et al., 2017).
The figure showing global temperatures is adapted and updated from Figure 4 in the World Meteorological Organization (WMO) Statement on the Status of Global Climate in 2012. Global temperature data used are a mean of four different global data sets as described in IPCC AR6 Section 2.3.1.1.3 and Table 2.3.
The Oceanic Nino Index (ONI) is defined as the three-month mean of ERSSTv5 sea surface temperature anomalies in the Niño 3.4 region (5 °N to 5 °S, 120 °W to 170 °W), based on a rolling 30-year base period updated every 5 years. Moderate and strong El Niño (La Niña) events in this figure are defined as those where the NOAA Oceanic Niño Index is +1.2 °C or above (−1.2 °C or below) in at least one three-month period during the 12 months from July to June, with weak events being those which do not meet that criterion. Based on data from the World Meteorological Organization.
Citations for key points are in the associated sections below.
Australia’s changing climate
Temperature
Dittus, A.J., Karoly, D.J., Lewis, S.C. and Alexander, L.V. (2014). An investigation of some unexpected frost day increases in southern Australia. Aust. Met. Oceanogr. J., 64, 261-271.
Grainger, S., Fawcett, R., Trewin, B., Jones, D., Braganza, K., Jovanovic, B., Martin, D., Smalley, R. and Webb, V. (2022). Estimating the uncertainty of Australian area-average temperature anomalies. Int. J. Climatol., 42, 2815-2834.
Nairn, J.R. and Fawcett, R.J.B. (2015). The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Heath, 12, 227-253.
Pepler, A., Ashcroft, L. and Trewin, B. (2018). The relationship between the subtropical ridge and Australian temperatures. J. South. Hem. Earth Sys. Sci., 68, 201-214.
Trewin, B. (2018). The Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) version 2. Bureau Research Report 32, Bureau of Meteorology.
Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R. and Webb, V. (2020). An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149-169.
Australian temperature data used in this section are drawn from version 2.3 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020).
Fire weather
Canadell, J.G., Haverd, V.E., Smith, B., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G.D., Woodgate, W., Briggs, P. and Trudinger, C.M. (2018, December). Higher than expected CO2 fertilisation inferred from leaf to global observations. In AGU Fall Meeting Abstracts.
Canadell, J.G., Meyer, C.P., Cook, G.D., Dowdy, A., Briggs, P.R., Knauer, J., Pepler, A. and Haverd, V. (2021). Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature communications, 12(1), pp.1-11.
Clarke, H., Pitman, A.J., Kala, J., Carouge, C., Haverd, V. & Evans, J. (2016). An investigation of future fuel load and fire weather in Australia. Climatic Change, 139 (3), 591-605.
Di Virgilio, G., Evans, J.P., Blake, S.A., Armstrong, M., Dowdy, A.J., Sharples, J. and McRae, R. (2019). Climate change increases the potential for extreme wildfires. Geophysical Research Letters, 46(14), pp.8517-8526.
Dowdy, A.J., Fromm, M.D. and McCarthy, N. (2017). Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research: Atmospheres, 122(14), pp.7342-7354.
Dowdy, A.J. (2018). Climatological Variability of Fire Weather in Australia. Journal of Applied Meteorology and Climatology, 57, 221-234.
Dowdy, A.J. and Pepler, A. (2018). Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions. Geophysical Research Letters, 45, 2005-2013.
Dowdy, A.J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S.L., Evans, J.P., Di Virgilio, G. and McCarthy, N. (2019). Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports, 9(1), 1-11.
Dowdy, A.J. (2020). Seamless climate change projections and seasonal predictions for bushfires in Australia. Journal of Southern Hemisphere Earth Systems Science, 70(1), pp.120-138.
Harris, S. and Lucas, C. (2019). Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE, 14.
McArthur, A.G. (1967). Fire behaviour in eucalypt forests. Australia. Forestry and Timber Bureau : Leaflet ; no. 107, Forestry and Timber Bureau, 36.
Van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, N.J., Lehner, F., Saunders, K.R., Van Weele, M., Haustein, K., Li, S., Wallom, D. and Sparrow, S. (2021). Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21(3), pp.941-960.
The figure is updated and adapted from Dowdy (2020).
Rainfall
Evans, A., Jones, D., Smalley, R. and Lellyett, S. (2020). An enhanced gridded rainfall analysis scheme for Australia. Bureau Research Report 41, Bureau of Meteorology.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302.
Rauniyar, S.P. and Power, S.B. (2020). The impact of anthropogenic forcing and natural processes on past, present and future rainfall over Victoria, Australia. J. Climate, 33, 8087-8106.
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034.
Rainfall data used in this section are drawn from the Australian Gridded Climate Data (AGCD) dataset (Evans et al., 2020).
Box: changes in weather systems and climate drivers
Abram, N.J., Hargreaves, J.A., Wright, N.M., Thirumalai, K., Ummenhofer, C.C. and England, M.H. (2020). Palaeoclimate perspectives on the Indian Ocean Dipole. Quart. Sci. Rev., 237, 106302.
Grose, M., Timbal, B., Wilson, L., Bathols, J. and Kent, D. (2015). The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Met. Oceanogr. J., 65, 90-106.
Pepler, A., Hope, P. and Dowdy, A. (2019). Long-term changes in southern Australian anticyclones and their impacts. Clim. Dyn, 53, 4701-4714.
Pepler, A. (2020). Record lack of cyclones in Australia during 2019. Geophys. Res. Lett., 47, e2020GL088488.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302.
Pepler, A.S. and Dowdy, A.J. (2022). Australia’s future extratropical cyclones. J. Climate, published online 26 August 2022.
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034.
The assessment of changes in climate drivers draws on the assessment findings of IPCC AR6: sections 2.4.1.2 (SAM), 2.4.2 (ENSO) and 2.4.3 (IOD).
Heavy rainfall
Bao, J., Sherwood, S.C., Alexander, L.V. and Evans, J.P. (2017). Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Chang., 7, 128–132.
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052.
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808. .
Pearce, K.B., Holper, P.N., Hopkins, M., Bouma, W.J., Whetton, P.H., Hennessy, K.J. and Power, S.B. (2007). Climate Change in Australia: technical report 2007.
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Climate Dynamics, 56(7), pp.2289-2302.
Box: extreme rainfall and flood risk
Callaghan, J. and Power, S.B. (2011). Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim. Dyn., 37, 647-662.
Chand, S.S., Dowdy, A.J., Ramsay, H.A. et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdisciplinary Reviews: Climate Change.
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052.
Dowdy, A.J., Pepler, A., Di Luca, A. et al. (2019). Review of Australian east coast low pressure systems and associated extremes. Climate Dynamics.
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808.
Johnson, F., White, C.J., van Dijk, A., Ekstrom, M., Evans, J.P., Jakob, D., Kiem, A.S., Leonard, M., Rouillard, A. and Westra, S. (2016). Natural hazards in Australia: floods. Climatic Change, 139(1), 21-35.
Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007.
Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2020). Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101 (3): E303–E322.
NESP (2020). Scenario analysis of climate-related physical risk for buildings and infrastructure: climate science guidelines. NESP Earth Systems and Climate Change (ESCC) Hub report for the Climate Measurement Standards Initiative, 116 pp.
Streamflow
Amirthanathan, G., Bari, M., Woldemeskel, F., Tuteja, N. and Feikema, P. (2022). Regional significance of historical trends and step changes in Australian streamflow. Hydrol. Earth Syst. Sci. Discuss. [preprint], in review, 2022.
Bureau of Meteorology (2020). Trends and historical conditions in the Murray-Darling Basin: a report prepared for the Murray-Darling Basin Authority by the Bureau of Meteorology. Available here.
Hamed, K.H. and Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196.
Hu, Z., Liu, S., Zhong, G., Lin, H. and Zhou, Z. (2020). Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrological Sciences Journal, 65(14), 2419-2438.
Turner, M. (2012). Hydrologic Reference Station selection guidelines. Bureau of Meteorology.
The analysis draws on data from all available Australian streamflow stations with sufficient data. A subset of this is the set of Hydrologic Reference Stations.
Details of Australia’s Topographic Drainage Divisions are available here.
Tropical cyclones
Chand, S.S., Dowdy, A.J., Ramsay, H.A. et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. WIREs Clim Change, 10:e602.
Chand, S.S., Walsh, K.J.E., Camargo, S.J. et al. (2022). Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 12, 655–661.
Dowdy, A.J. (2014). Long-term changes in Australian tropical cyclone numbers. Atmos. Sci. Lett., 15: 292-298.
Kossin, J.P., Knapp, K.R., Olander, T.L. and Velden, C.S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of National Academy of Sciences of the United States of America, 117(22), 11975– 11980.
Nicholls, N. (1984). The southern oscillation, sea-surface temperature, and internannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661–670,
Ramsay, H.A., Leslie, L.M., Lamb, P.J., Richman, M.B. and Leplastrier, M. (2008). Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment, Journal of Climate, 21(5), 1083-1103.
Snowfall
Pepler, A.S., Trewin, B. and Ganter, C. (2015). The influence of climate drivers on the Australian snow season. Aust. Met. Oceanogr. J., 65, 195-205.
Snow depth data for Spencers Creek are sourced from Snowy Hydro.
Oceans
Sea surface temperature
Benthuysen, J.A., Oliver, E.C.J., Chen, K. and Wernberg, T. (2020). Editorial: advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7:147.
Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S. and Zhang, H-M. (2017). NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information. doi:10.7289/V5T72FNM.
Feng, M., Caputi, N., Chandrapavan, A., Chen, M., Hart, A. and Kangas, M. (2021). Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. Journal of Marine Systems, 214, 103473.
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C.J., Benthuysen, J., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S. and Wernberg, T. (2016a). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238.
Hu, S. and Fedorov, A.V. (2017). The extreme El Niño of 2015–2016 and the end of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824.
Kajtar, J.B., Holbrook, N.J. and Hernaman, V. (2021). A catalogue of marine heatwave metrics and trends for the Australian region. Journal of Southern Hemisphere Earth Systems Science, 71, 284–302.
Vanderklift, M.A., Babcock, R.C., Barnes, P.B., Cresswell, A.K., Feng, M., Haywood, M.D., Holmes, T.H., Lavery, P.S., Pillans, R.D., Smallwood, C.B. and Thomson, D.P. (2020). The oceanography and marine ecology of Ningaloo, a world heritage area. In Oceanography and Marine Biology. Taylor & Francis.
Wu, L., Cai, W., Zhang, L. et al. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Clim Change 2, 161–166.
Ocean heat content
Liang, X., Liu, C., Ponte, R.M. and Chambers, D.P. (2021). A comparison of the variability and changes in global ocean heat content from multiple objective analysis products during the Argo period. Journal of Climate, 34(19), 7875-7895.
Cheng, L., Abraham, J., Trenberth, K.E., Fasullo, J., Boyer, T., Mann, M.E. et al. (2022). Another record: Ocean warming continues through 2021 despite La Niña conditions. Advances in Atmospheric Sciences, 39(3), 373-385.
Wang, L., Lyu, K., Zhuang, W., Zhang, W., Makarim, S. and Yan, X.H. (2021). Recent shift in the warming of the Southern Oceans Modulated by decadal climate variability. Geophysical Research Letters, 48(3), e2020GL090889.
Rathore, S., Bindoff, N.L., Phillips, H.E. and Feng, M. (2020). Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nature communications, 11(1), 1-8.
Bagnell, A. and DeVries, T. (2021). 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nature Communications, 12(1), 1-10.
Johnson, G.C. and Lyman, J.M. (2020). Warming trends increasingly dominate global ocean. Nature Climate Change, 10(8), 757-761.
Johnson, G.C., Cadot, C., Lyman, J.M., McTaggart, K.E. and Steffen, E.L. (2020). Antarctic bottom water warming in the Brazil Basin: 1990s through 2020, from WOCE to Deep Argo. Geophysical Research Letters, 47(18), e2020GL089191.
Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M.Z., Landerer, F.W., Stammer, D. et al. (2019). Measuring global ocean heat content to estimate the Earth energy imbalance. Frontiers in Marine Science, 6, 432.
Purkey, S.G., Johnson, G.C., Talley, L.D., Sloyan, B.M., Wijffels, S.E., Smethie, W. et al. (2019). Unabated bottom water warming and freshening in the South Pacific Ocean. Journal of Geophysical Research: Oceans, 124(3), 1778-1794.
Von Schuckmann, K., Cheng, L., Palmer, M.D., Hansen, J., Tassone, C., Aich, V. et al. (2020). Heat stored in the Earth system: where does the energy go?. Earth System Science Data, 12(3), 2013-2041.
Box: marine heatwaves and coral reefs
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C.J., Benthuysen, J., Burrows, M.T., Donat, M. G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S. and Wernberg, T. (2016a). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238.
Holbrook, N.J., Gupta, A.S., Oliver, E.C.J., Hobday, A.J., Benthuysen, J.A., Scannell, H.A., Smale, D.A. and Wernberg T. (2020). Keeping Pace with Marine Heatwaves as Oceans Warm. Nature Reviews Earth & Environment.
Spillman, C.M. and Smith, G.A. (2021). A new operational seasonal thermal stress prediction tool for coral reefs around Australia. Frontiers of Marine Science.
Spillman, C.M., Smith, G.A., Hobday, A.J. and Hartog, J.R. (2021). Onset and decline rates of marine heatwaves: global trends, seasonal forecasts and marine management. Frontiers of Climate.
Sea level
Agarwal, N., Jungclaus, J.H., Köhl, A., Mechoso, C.R. and Stammer, D. (2015). Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environmental Research Letters, vol. 10, no. 7, pp. 1–8.
Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S. and Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters, vol. 39, no. 19, p. L19602.
Burgette, R.J., Watson, C.S., Church, J.A., White, N.J., Tregoning, P. and Coleman, R. (2013). Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophysical Journal International, vol. 194, no. 2, pp. 719–736.
Cazenave, A., Meyssignac, B., Ablain, M., Balmaseda, M., Bamber, J., Barletta, V. et al. (2018). Global sea-level budget 1993-present. Earth System Science Data, 10(3), 1551–1590.
Chen, X., Zhang, X., Church, J.A., Watson, C.S., King, M.A., Monselesan, D., Legresy B. and Harig, C. (2017). The increasing rate of global mean sea-level rise during 1993-2014. Nature Climate Change 7, 492-495.
Church, J.A., Hunter, J.R., McInnes, K.L. and White, N.J. (2006). Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Met. Mag. 55 (2006) 253-260.
Church, J.A. and White, N.J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, vol. 32, no. 4-5, 585–602.
Fasullo, J.T., Boening, C., Landerer, F.W. and Nerem, R.S. (2013) Australia’s unique influence on global sea level in 2010-2011. Geophysical Research Letters, vol. 40, no. 16, 4368–4373.
Featherstone, W.E., Penna, N.T., Filmer, M.S. and Williams, S.D.P. (2015). Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 120(10), 7004–7014.
Hinkel, J., Church, J.A., Gregory, J.M., Lambert, E., Lowe J., McInnes, K.L., Nicholls, R.J., van der Pol, T.D. and van de Wal, R. (2019). Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth’s Future, 7(3), 320 – 327.
Hague, B.S., Murphy, B.F., Jones, D.A. and Taylor, A.J. (2019). Developing impact-based thresholds for coastal inundation from tide gauge observations. Journal of Southern Hemisphere Earth Systems Science, vol. 69, 252-272.
Hague, B.S, McGregor, S., Murphy, B.F., Reef, R. and Jones, D.A. (2020). Sea-Level Rise Driving Increasingly Predictable Coastal Inundation in Sydney, Australia. Earth’s Future.
Hague, B.S., Jones, D.A., Jakob, D., McGregor, S. and Reef, R. (2022). Australian coastal flooding trends and forcing factors. Earth’s Future, 10, e2021EF002483.
Honisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E. et al. The Geological Record of Ocean Acidification. Science, 2012; 335 (6072): 1058
IPCC AR6 Chapter 9
Jevrejeva, S., Moore, J.C., Grinsted, A. and Woodworth, P.L. (2008). Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters, vol. 35, no. 8, L08715.
Masters, D., Nerem, R.S., Choe, C., Leuliette, E., Beckley, B., White, N. and Ablain, M. (2012). Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2. Marine Geodesy, vol. 35, no. sup1, 20–41.
McInnes, K.L., Church, J.A., Monselesan, D., Hunter, J.R., O’Grady, J.G., Haigh, I.D. and Zhang, X. (2015). Information for Australian Impact and Adaptation Planning in response to Sea-level Rise, Australian Meteorological and Oceanographic Journal, 65:1, 127–149.
Ray, R.D. and Douglas, B.C. (2011). Experiments in reconstructing twentieth-century sea levels. Progress in Oceanography, vol. 91, no. 4, 496–515
Rignot, E., Velicogna, I., Van Den Broeke, M.R., Monaghan, A. and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, vol. 38, no. 5, p. L05503.
Royston, S., Watson, C.S., Legrésy, B., King, M.A., Church, J.A. and Bos, M.S. (2018). Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise. Journal of Geophysical Research: Oceans, 123(3), 1978–1993.
Slangen, A., Church, J., Agosta, C. et al. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Clim Change 6, 701–705.
Wang, J., Church, J.A., Zhang, X. et al. (2021). Reconciling global mean and regional sea level change in projections and observations. Nat Commun 12, 990.
Wang, J., Church, J.A., Zhang, X., Gregory, J.M., Zanna, L. and Chen, X. (2021). Evaluation of the local sea-level budget at tide gauges since 1958. Geophysical Research Letters, 48, e2021GL094502.
Watson, C.S., White, N.J., Church, J.A., King, M.A., Burgette, R.J. and Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, vol. 5, no. 6, 565–568.
White, N.J., Haigh, I.D., Church, J.A., Koen, T., Watson, C.S., Pritchard, T.R., Watson, P.J., Burgette, R.J., McInnes, K.L., You, Z.J., Zhang, X. and Tregoning, P. (2014). Australian sea levels-trends, regional variability and influencing factors. Earth-Science Reviews, vol. 136, 155-174.
Wijffels, S., Beggs, H., Griffin, C., Middleton, J., Cahill, M., King, E., Jones, E., Feng, M., Benthuysen, J., Steinberg, C., Sutton, P. (2018). A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): seasonal variability and trends around Australasia and New Zealand revisited. Journal of Marine Systems, Vol 87, 156-196.
Woolworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A. and Gehrels, W.R. (2008). Evidence for the accelerations of sea level on multi-decade and century timescales. International Journal of Climatology, 29(6), 777-789.
Zhang, X. and Church, J.A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701.
Zhang, X., Church, J.A., Monselesan, D. and McInnes, K.L. (2017). Sea level projections for the Australian region in the 21st century. Geophysical Research Letters, 44(16), 8481–8491.
Ocean acidification
Comeau, S., Cornwall, C.E., DeCarlo, T.M. et al. (2019). Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nature Climate Change 9, 477–483.
Doney, S.C., Busch, D.S., Cooley, S.R. and Kroeker, K.J. (2020). The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources 2020, 45:1, 83-112.
Fabricius, K.E., Neill, C., Van Ooijen, E., Smith, J.N. and Tilbrook, B. (2020). Progressive seawater acidification on the Great Barrier Reef continental shelf. Scientific Reports, 10(1).
Gregor, L. and Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth System Science Data, 13(2), 777–808.
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A. and Williams, B. (2012). The geological record of ocean acidification. Science (New York, N.Y.), 335(6072), 1058–1063.
Hurd, C.L., Lenton, A., Tilbrook, B. and Boyd, P.W. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change 8, 686–694.
IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Portner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp.
Jiang, L.-Q., Carter, B.R., Feely, R.A., Lauvset, S.K. and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 18624.
Lenton, A., Tilbrook, B., Matear, R.J., Sasse, T., Nojiri, Y. (2016). Historical reconstruction of ocean acidification in the Australian region. Biogeosciences, vol. 13, 1753-1765.
Mongin, M., Baird, M.E., Tilbrook, B., Matear, R.J., Lenton, A., Herzfeld, M. et al. (2016). The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 7, 10732.
Smith, J.N., Mongin, M., Thompson, A., Jonker, M.J., De’ath, G. and Fabricius, K. E. (2020). Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. Global Change Biology, 26(4), 2149–2160.
Sunday, J.M., Fabricius, K.E., Kroeker, K.J., Anderson, K.M., Brown, N.E., Barry, J.P. et al. (2017). Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 7(1), 81–85.
Sutton, A.J., Sabine, C.L., Feely, R.A., Cai, W.J., Cronin, M.F., McPhaden, M.J. et al. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083.
Tilbrook, B., Van Oiijen, E., Neill, C., Berry, K., Akl, J., Passmore, A., Black, J., Lenton, A. and Richardson, A. J. (2020). Ocean Acidification in State and Trends of Australia’s Ocean Report eds Richardson, A.J., Eriksen, R., Moltmann, T., Hodgson-Johnston, I., Wallis, J. R., Integrated Marine Observing System, Hobart
Cryosphere
Abram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J.R., Clarke, H., Dowdy, A.J. et al. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 8.
Cavalieri, D.J., Parkinson, C.L., Gloersen, P. and Zwally, H. J. (1996). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.
Hobbs, W.R., Massom, R., Stammerjohn, S., Reid, P., Williams, G. and Meier, W. (2016). A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143.
Kusahara, K., Reid, P., Williams, G.D., Massom, R. and Hasumi, H. (2018). An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environmental Research Letters, 13(8).
Liang, D., Guo, H., Zhang, L., Cheng, Y., Zhu, Q. and Liu, X. (2021). Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine. Remote Sensing of Environment, 256, 112318.
Lim, E.-P., Hendon, H.H., Butler, A.H., Thompson, D.W.J., Lawrence, Z.D., Scaife, A.A. et al. (2021). The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bulletin of the American Meteorological Society, 102(6), E1150–E1171.
Maslanik, J. and Stroeve, J. (1999). updated daily: Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations. National Snow and Ice Data Center, Boulder, CO, digital media. Retrieved here.
Massom, R.A., Scambos, T.A., Bennetts, L.G., Reid, P., Squire, V.A. and Stammerjohn, S.E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389.
Mazloff, M.R., Sallee, J.B., Menezes, V.V., Macdonald, A.M., Meredith, M.P., Newman, L. et al. (2017). Southern Ocean [in ’State of the Climate in 2016’]. Bulletin of the American Meteorological Society, 98(8), S166–S167.
Meehl, G.A., Arblaster, J.M., Chung, C.T.Y., Holland, M.M., DuVivier, A., Thompson, L. et al. (2019). Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10(1), 14.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A. et al. (2019). Polar Regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, … W. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Noble, T.L., Rohling, E.J., Aitken, A.R.A., Bostock, H.C., Chase, Z., Gomez, N. et al. (2020). The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 58(4), 1–89.
Owens, I. and Zawar-Reza, P. (2015). Weather and Climate. In D. Liggett, B. Storey, Y. Cook, & V. Meduna (Eds.), Exploring the Last Continent: An Introduction to Antarctica (pp. 91–114). Springer International Publishing.
Purich, A. and England, M.H. (2019). Tropical Teleconnections to Antarctic Sea Ice During Austral Spring 2016 in Coupled Pacemaker Experiments. Geophysical Research Letters, 46(12), 6848–6858.
Reid, P.A. and Massom, R.A. (2022). Change and variability in Antarctic coastal exposure, 1979–2020. Nature Communications, 13(1).
Reid, P.A., Stammerjohn, S., Massom, R.A., Barreira, S., Scambos, T. and Lieser, J. (2022). Antarctic Sea ice extent, concentration, and seasonality [in “State of the Climate in 2021”] (submitted). Bulletin of the American Meteorological Society.
Stammerjohn, S. and Maksym, T. (2017). Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In Sea Ice (pp. 261–289).
Teder, N., Bennetts, L., Reid, P. and Massom, R. (2022). Sea ice-free corridors for large swell to reach Antarctic ice shelves. Environmental Research Letters. Retrieved here.
van Ommen, T.D. and Morgan, V. (2010). Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nature Geoscience, 3(4), 267–272.
Vance, T.R., Roberts, J.L., Plummer, C.T., Kiem, A.S. and van Ommen, T.D. (2015). Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophysical Research Letters, 42(1), 129–137.
Wille, J.D., Favier, V., Dufour, A., Gorodetskaya, I.V, Turner, J., Agosta, C. and Codron, F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911–916.
Yuan, X., Kaplan, M.R. and Cane, M.A. (2018). The interconnected global climate system-a review of tropical-polar teleconnections. Journal of Climate, 31(15), 5765–5792.
The assessment of the contribution of ice sheet melting to global sea level rise draws from IPCC AR6 Table 9.5.
Data sources for the figures are as follows:
Figure 1. Sea-ice extent values are calculated from satellite passive-microwave ice concentration data obtained from the National Snow and Ice Data Center (Cavalieri et al. 1996, updated annually for 1979-2021, and Maslanik and Stroeve 1999 for 2022).
Figure 2. Duration values are calculated from satellite passive-microwave ice concentration data obtained from the National Snow and Ice Data Center (Cavalieri et al. 1996, updated annually for 1979-2021, and Maslanik and Stroeve 1999 for 2022).
Greenhouse Gases (including Global carbon budget)
Notes
Figure of emissions of three greenhouse gases in past 200 years (additional detail): Data in both panels are from in situ monitoring by CSIRO and the Bureau of Meteorology (commencing Kennaook/Cape Grim, Tasmania, 1976) and the Advanced Global Atmospheric Gases Experiment (global, including Kennaook/Cape Grim, commencing 1978) and from measurements of flask air samples (global, including Kennaook/Cape Grim, commencing 1992), the Kennaook/Cape Grim Air Archive (1978-2019) at the CSIRO GASLAB (Aspendale, Melbourne), and air from Antarctic firn (compacted snow) and ice cores measured at CSIRO GASLAB and ICELAB (Aspendale, Melbourne).
References
Derek, N., Krummel, P.B. and Cleland, S.J. (Eds) (2014). Baseline atmospheric program Australia 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research.
Etminan, M., Myhre, G., Highwood, E.J. and Shine, K.P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12,614-12,623.
Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, J.G. et al. (2022). Global Carbon Budget 2021. Earth System Science Data 14:1917-2005. https://doi.org/10.5194/essd-14-1917-2022
Global Carbon Project (2022). Global Carbon Budget 2021. Data accessed May 2022.
Gohar, L.K. and Shine, K.P. (2007). Equivalent CO 2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311.
Graven, H., Allison, C.E., Etheridge, D.M., Hammer, S., Keeling, R.F., Levin, I. et al. (2017). Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development, 10(12), 4405–4417.
IPCC AR6 Chapter 7
Jackson, R.B., Friedlingstein, P., Le Quere, C., Abernethy, S., Andrew, R.M., Canadell, J.G., Ciais, P., Davis, S.J. and Deng, Z. (2022). Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters 17: 031001.
Liu, Z., Deng, Z., Zhu, B. et al. (2022). Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. 15, 615–620.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D.M., Fraser, P.J., Montzka, S.A., Rayner, P.J., Trudinger, C.M., Krummel, P.B., Beyerle, U., Canadell, J.G., Daniel, J.S., Enting, I.G., Law, R.M., Lunder, C.R., O’Doherty, S., Prinn, R.G., Reimann, S., Rubino, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J. and Weiss, R. (2017), Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10(5), 2057-2116.
Krummel, P.B., Fraser, P.J., Steele, L.P., Derek, N., Rickard, C., Ward, J., Somerville, N.T., Cleland, S.J., Dunse, B.L., Langenfelds, R.L., Baly, S. and Leist, M.A. (2014). The AGAGE in situ program for non-CO2 greenhouse gases at Cape Grim, 2009-2010, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 56-70.
Langenfelds, R.L., Steele, L.P., Gregory, R.L., Krummel, P.B., Spencer, D.A. and Howden, R.T. (2014). Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 45-49.
Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R.J., Gomez-Pelaez, A.J., Steele, L.P., Wagenbach, D., Weller, R. and Worthy, D.E. (2010). Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus, Series B: Chemical and Physical Meteorology, vol. 62, no. 1, 26–46.
Le Quéré, C., Jackson, R.B., Jones, M.W., Smith, A.J.P., Abernethy, S., Andrew, R.M., De-Gol, A.J., Willis, D.R., Shan, Y., Canadell, J.G., Friedlingstein, P., Creutzig, F. and Peters, G.P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 10(7), 647-653.
Machida, T., Nakazawa, T., Fujii, Y., Aoki, S. and Watanabe, O. (1995). Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophysical Research Letters, vol. 22, no. 21, 2921–2924 [ED(A10].
Park, S., Croteau, P., Boering, K.A., Etheridge, D.M., Ferretti, D., Fraser, P.J., Kim, K.-R., Krummel, P.B., Langenfelds, R.L., van Ommen, T.D., Steele, L.P. and Trudinger, C.M. (2012). Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience, vol. 5, no. 4, 261–265.
Prinn, R.G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L. et al. (2018). History of Chemically and Radiatively Important Atmospheric Gases from the Advanced Global Atmospheric Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985-1018.
Rubino, M., Etheridge, D.M., Thornton, D.P., Howden, R., Allison, C.E., Francey, R.J., Langenfelds, R.L., Steele, L.P., Trudinger, C.M., Spencer, D.A., Curran, M.A.J., van Ommen, T.D. and Smith, A.M. (2019). Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492.
Saunois, M., Stavert, A.R., Poulter, B. et al. (2020). The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623.
Steele, P., Krummel, P., van der Schoot, M., Spencer, D., Baly, S., Langenfelds, R., Howden, R., Ward, J., Somerville, N. and Cleland, S. (2014). Baseline carbon dioxide monitoring. Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 39-41.
Sturrock, G.A., Etheridge, D.M., Trudinger, C.M., Fraser, P.J. and Smith, A.M. (2002). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species. Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–14.
Tian, H., Xu, R., Canadell, J.G. et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256.
Trudinger, C.M., Etheridge, D.M., Rayner, P.J., Enting, I.G., Sturrock, G.A. and Langenfelds, R.L. (2002). Reconstructing atmospheric histories from measurements of air composition in firn. Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–13.
Future climate
Knutson, T., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society101, 3, E303-E322, available here [Accessed 28 April 2022]
Information is drawn from the following IPCC reports, notably AR6:
Australian Bureau of Meteorology and CSIRO, 2022, State of the Climate 2022, 28pp.
- Future temperature and heat extremes: Chapter 11.3, Atlas 6.4 and Interactive Atlas.
- Rainfall and drought: Chapters 8.3, 8.4, 11.6, 12.4.3, Atlas 6.4 and Interactive Atlas
- Extreme rainfall: Chapters 8.3, 8.4, 11.4 and 12.4.3
- Tropical cyclones and storms: Chapters 11.7 and 12.3
- Coastal and marine: Box 9.2, Chapters 9.6, 12.3.5 and 12.4.3
- Compound events: 11.8, 12.4 and Special Report on the Ocean and Cryosphere in a Changing Climate, Chapter 6