The SARS-CoV pandemic killed 774 people of the 8094 people infected, a case fatality ratio of almost 10 per cent. With cases diagnosed across the world, the pandemic had an impact on international travel and trade.
The research team, led by Professor Shi Zhengli from Wuhan Institute of Virology, Chinese Academy of Sciences and including CSIRO and Duke-NUS scientist Professor Linfa Wang, have just had their breakthrough results published in the prestigious journal Nature.
While researchers globally have previously used genetic sequencing to demonstrate that bats are the natural reservoirs of SARS-like CoVs, this is the first time that live virus has been successfully isolated from bats to definitively confirm them as the origin of the virus.
The team successfully isolated a SARS-like CoV, named SL-CoV WIV1, directly from faecal samples of Chinese Horseshoe bats using the world renowned bat virus isolation methodology developed by scientists at CSIRO’s Australian Animal Health Laboratory in Geelong.
The results will help governments design more effective prevention strategies for SARS and similar epidemics.
Horseshoe bats are found around the world, including Australia and play an important ecological role. Their role in SARS-CoV transmission highlights the importance of protecting the bat’s natural environment so they are not forced into highly populated urban areas in search of food.
This work is part of CSIRO's ongoing commitment to protect Australia from biosecurity threats posed by new and emerging infectious diseases.