

Australia's National Science Agency

Water resource assessment for the Victoria catchment

A report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid

Editors: Cuan Petheram, Seonaid Philip, Ian Watson, Caroline Bruce and Chris Chilcott

ISBN 978-1-4863-2105-6 (print)

ISBN 978-1-4863-2106-3 (online)

Citation

Petheram C, Philip S, Watson I, Bruce C and Chilcott C (eds) (2024) Water resource assessment for the Victoria catchment. A report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

Chapters should be cited in the format of the following example: Bruce C, Petheram C, Philip S and Watson I (2024) Chapter 1: Preamble. In: Petheram C, Philip S, Watson I, Bruce C and Chilcott C (eds) (2024) Water resource assessment for the Victoria catchment. A report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2024. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document, please contact csiroenquiries@csiro.au.

CSIRO Victoria River Water Resource Assessment acknowledgements

This report was funded through the National Water Grid's Science Program, which sits within the Australian Government's Department of Climate Change, Energy, the Environment and Water.

Aspects of the Assessment have been undertaken in conjunction with the Northern Territory (NT) Government.

The Assessment was guided by two committees:

- i. The Assessment's Governance Committee: CRC for Northern Australia/James Cook University; CSIRO; National Water Grid (Department of Climate Change, Energy, the Environment and Water); Northern Land Council; NT Department of Environment, Parks and Water Security; NT Department of Industry, Tourism and Trade; Office of Northern Australia; Queensland Department of Agriculture and Fisheries; Queensland Department of Regional Development, Manufacturing and Water
- The Assessment's joint Roper and Victoria River catchments Steering Committee: Amateur Fishermen's Association of the NT; Austrade; Centrefarm; CSIRO; National Water Grid (Department of Climate Change, Energy, the Environment and Water); Northern Land Council; NT Cattlemen's Association; NT Department of Environment, Parks and Water Security; NT Department of Industry, Tourism and Trade; NT Farmers; NT Seafood Council; Office of Northern Australia; Parks Australia; Regional Development Australia; Roper Gulf Regional Council Shire; Watertrust

Responsibility for the Assessment's content lies with CSIRO. The Assessment's committees did not have an opportunity to review the Assessment results or outputs prior to their release.

This report was reviewed by Dr Brian Keating (Independent consultant). Individual chapters were reviewed by Dr Rebecca Doble, CSIRO (Chapter 2); Dr Chris Pavey, CSIRO (Chapter 3); Dr Heather Pasley, CSIRO (Chapter 4); Mr Chris Turnadge, CSIRO (Chapter 5); Dr Nikki Dumbrell, CSIRO (Chapter 6); Dr Adam Liedloff, CSIRO (Chapter 7). The material in this report draws largely from the companion technical reports, which were themselves internally and externally reviewed.

For further acknowledgements, see page xxv.

Acknowledgement of Country

CSIRO acknowledges the Traditional Owners of the lands, seas and waters of the area that we live and work on across Australia. We acknowledge their continuing connection to their culture and pay our respects to their Elders past and present.

Photo

The Victoria River is the longest singularly named river in the NT with permanent water. Photo: CSIRO – Nathan Dyer

Skull Creek formation - part of the outcropping Proterozoic dolostone aquifer in the central part of the Victoria catchment

Photo: CSIRO - Nathan Dyer

Appendix A

Assessment products

More information about the Victoria River Water Resource Assessment can be found at https://www.csiro.au/victoriariver. The website provides readers with a communications suite including factsheets, multimedia content, FAQs, reports and links to other related sites, particularly about other research in northern Australia.

In order to meet the requirements specified in the contracted 'Timetable for the Services', the Assessment provided the following key deliverables:

- Technical reports present scientific work at a level of detail sufficient for technical and scientific experts to reproduce the work. Each of the activities of the Assessment has at least one corresponding technical report.
- The catchment report (this report) synthesises key material from the technical reports, providing well-informed but non-scientific readers with the information required to make decisions about the opportunities, costs and benefits associated with water resource development.
- A summary report is provided for a general public audience.
- A factsheet provides key findings for a general public audience.

This appendix lists all such deliverables, plus those jointly delivered for the concurrent Southern Gulf Water Resource Assessment.

Please cite as they appear.

Methods report

CSIRO (2021) Proposed methods report for the Victoria catchment. A report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid Authority. CSIRO, Australia.

Technical reports

- Barber M, Fisher K, Wissing K, Braedon P and Pert P (2024) Indigenous water values, rights, interests and development goals in the Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Devlin K (2023) Pump stations for flood harvesting or irrigation downstream of a storage dam. A technical report from the CSIRO Victoria and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.
- Devlin K (2024) Conceptual arrangements and costings of hypothetical irrigation developments in the Victoria and Southern Gulf catchments. A technical report from the CSIRO Victoria and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.

- Hayward J (2024) Potential for farm-scale hybrid renewable energy supply options in the Victoria and Southern Gulf catchments. A technical report from the CSIRO Victoria and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.
- Hughes J, Yang A, Marvanek S, Wang B, Gibbs M and Petheram C (2024) River model calibration for the Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Hughes J, Yang A, Wang B, Marvanek S, Gibbs M and Petheram C (2024) River model scenario analysis for the Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Karim F, Kim S, Ticehurst C, Hughes J, Marvanek S, Gibbs M, Yang A, Wang B and Petheram C (2024) Floodplain inundation mapping and modelling for the Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Knapton A, Taylor AR and Crosbie RS (2024) Estimated effects of climate change and groundwater development scenarios on the Cambrian Limestone Aquifer in the eastern Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- McJannet D, Yang A and Seo L (2023) Climate data characterisation for hydrological and agricultural scenario modelling across the Victoria, Roper and Southern Gulf catchments. A technical report from the CSIRO Victoria River and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.
- Motson K, Mishra A and Waltham N (2024) A review of water quality studies relevant to northern Australia. A technical report from the CSIRO Victoria and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.
- Speed R and Vanderbyl T (2024) Regulatory requirements for land and water development in the Northern Territory and Queensland. A technical report from the CSIRO Victoria and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO, Australia.
- Stratford D, Kenyon R, Pritchard J, Merrin L, Linke S, Ponce Reyes R, Buckworth R, Castellazzi P,
 Costin B, Deng R, Gannon R, Gao S, Gilbey S, Lachish S, McGinness H and Waltham N (2024)
 Ecological assets of the Victoria catchment to inform water resource assessments. A
 technical report from the CSIRO Victoria River Water Resource Assessment for the National
 Water Grid. CSIRO, Australia.
- Stratford D, Linke S, Merrin L, Kenyon R, Ponce Reyes R, Buckworth R, Deng RA, Hughes J, McGinness H, Pritchard J, Seo L and and Waltham N (2024) Assessment of the potential ecological outcomes of water resource development in the Victoria catchment. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Taylor AR, Pritchard JL, Crosbie RS, Barry KE, Knapton A, Hodgson G, Mule S, Tickell S and Suckow A (2024) Characterising groundwater resources of the Montejinni Limestone and Skull Creek Formation in the Victoria catchment, Northern Territory. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

- Thomas M, Philip S, Stockmann U, Wilson PR, Searle R, Hill J, Gregory L, Watson I and Wilson PL (2024) Soils and land suitability for the Victoria catchment, Northern Territory. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Vanderbyl T (2024) The Northern Territory's water planning arrangements. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Waschka M and Macintosh A (2024) CSIRO Water Resource Assessments: Indigenous rights and interests in Queensland and the Northern Territory. A report from Barraband Consulting to CSIRO to inform the CSIRO Victoria, Roper and Southern Gulf Water Resource Assessments. CSIRO, Australia.
- Webster A, Jarvis D, Jalilov S, Philip S, Oliver Y, Watson I, Rhebergen T, Bruce C, Prestwidge D, McFallan S, Curnock M and Stokes C (2024) Financial and socio-economic viability of irrigated agricultural development in the Victoria catchment, Northern Territory. A technical report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.
- Yang A, Petheram C, Marvanek S, Baynes F, Rogers L, Ponce Reyes R, Zund P, Seo L, Hughes J, Gibbs M, Wilson PR, Philip S and Barber M (2024) Assessment of surface water storage options in the Victoria and Southern Gulf catchments. A technical report from the CSIRO Victoria River and Southern Gulf Water Resource Assessments for the National Water Grid. CSIRO Australia.

Catchment report

Petheram C, Philip S, Watson I, Bruce C and Chilcott C (eds) (2024) Water resource assessment for the Victoria catchment. A report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

Summary report

CSIRO (2024) The Victoria River Water Resource Assessment. A summary report from the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

Factsheet on key findings

CSIRO (2024) The Victoria River Water Resource Assessment. Key messages of reports to the CSIRO Victoria River Water Resource Assessment for the National Water Grid. CSIRO, Australia.

Appendix B

Shortened forms

SHORT FORM	FULL FORM
4WD	four-wheel drive
ААРА	Aboriginal Areas Protection Authority
ABS	Australian Bureau of Statistics
ACARA	Australian Curriculum, Assessment and Reporting Authority
AE	adult equivalent
AEP	annual exceedance probability
AHD	Australian Height Datum
ALRA	Aboriginal Land Rights (Northern Territory) Act 1976 (Cth)
AMTD	adopted middle thread distance
APSIM	Agricultural Production Systems sIMulator
ΑΡνΜΑ	Australian Pesticides and Veterinary Medicines Authority
ASC	Australian Soil Classification
AWC	available water capacity
BCR	benefit-to-cost ratio
вом	Bureau of Meteorology
САМВА	China–Australia Migratory Bird Agreement
СВА	cost-benefit analysis
CBR	cost-to-benefit ratio
CLA	Cambrian Limestone Aquifer
CLC	Central Land Council
СМВ	chloride mass balance
СМІР	Coupled Model Intercomparison Project
CSIPN	Center for Support of Indigenous Peoples of the North
CSIRO	Commonwealth Scientific and Industrial Research Organisation
Cth	Commonwealth
cv	coefficient of variation
DCFR	diversion commencement flow requirement
DEPWS	Department of Environment, Parks and Water Security
DIDO	drive-in drive-out
DIWA	Directory of Important Wetlands in Australia
DKIS	Darwin–Katherine Interconnected System
DOI	digital object identifier

SHORT FORM	FULL FORM
EB	embankment dams
EBITDA	earnings before interest, taxes, depreciation and amortisation
EC	electrical conductivity
EIS	Environmental Impact Statement
ENSO	El Niño–Southern Oscillation
EOS	end of system
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999
EPPRD	Emergency Plant Pest Response Deed
ET	evapotranspiration
FIFO	fly-in fly-out
FSL	full supply level
FTE	full-time equivalent
GCM	global climate model
GCM-PS	global climate model – pattern scaled
GDE	groundwater-dependent ecosystem
GM	gross margin
GVAP	gross value of agricultural production
GVIAP	gross value of irrigated agricultural production
HSD	health service district
IBA	Important Bird and Biodiversity Area
IEO	Index of Education and Occupation
IER	Index of Economic Resources
ILUA	Indigenous Land Use Agreement
IPA	Indigenous Protected Area
IPCC	Intergovernmental Panel on Climate Change
IRR	internal rate of return
IRSAD	Index of Relative Socio-Economic Advantage and Disadvantage
IRSD	Index of Relative Socio-Economic Disadvantage
IUCN	International Union for Conservation of Nature
JAMBA	Japan–Australia Migratory Bird Agreement
КІР	Kalkarindji Igneous Province
MAR	managed aquifer recharge
MODIS	Moderate Resolution Imaging Spectroradiometer
NAILSMA	Northern Indigenous Land and Sea Management Alliance
NAWRA	Northern Australia Water Resource Assessment
n.d.	not dated
NLC	Northern Land Council
NPF	Northern Prawn Fishery

SHORT FORM	FULL FORM
NPV	net present value
NT	Northern Territory
0&M	annual operation and maintenance
ORIA	Ord River Irrigation Area
PAW	plant available water
PAWC	plant available water capacity
РВС	Prescribed Body Corporate
PDA	Proterozoic dolostone aquifer
PE	potential evaporation
PET	potential evapotranspiration
PHN	primary health network
PMST	Protected Matters Search Tool
Qld	Queensland
RCC	roller compacted concrete
RNTBC	Registered Native Title Body Corporate
ROKAMBA	Republic of Korea–Australia Migratory Bird Agreement
RoNA	rest of northern Australia
SA2	Statistical Area Level 2
SAWR	Strategic Aboriginal Water Reserve
SEIFA	socio-economic indexes for areas
SGG	soil generic group
SILO	Scientific Information for Land Owners
SOI	Southern Oscillation Index
SSP	Shared Socio-economic Pathway
SWL	standing water level
TDS	total dissolved solids
то	Traditional Owner
TraNSIT	Transport Network Strategic Investment Tool
VRD	Victoria River district
WA	Western Australia
WAP	water allocation plan
WoNS	Weed of National Significance

Units

SHORT FORM	FULL FORM
\$	dollars
%	per_cent
c	cents
cm	centimetre
d	day
dS	decisiemens
DS	dry season
g	gram
GL	gigalitre (1,000,000,000 litres)
GWh	gigawatt hour
ha	hectare
kg	kilogram (1000 grams)
km	kilometre (1000 metres)
km²	square kilometre
kPa	kilopascal
kV	kilovolt
kW	kilowatt
kWh	kilowatt hour
L	litre
m	metre
m ³	cubic metre
mBGL	metres below ground level
mEGM96	metres (Earth Gravity Model of 1996)
mg	milligram
ML	megalitre (1,000,000 litres)
mm	millimetre
MW	megawatt
MWh	megawatt hour
s	second
t	metric tonne
У	year
°C	degrees Celsius

Appendix C

List of figures

Figure 1-1 Map of Australia showing Assessment area (Victoria catchment) and other recent or ongoing CSIRO Assessments
Figure 1-2 Number of large dams constructed in Australia and northern Australia over time 8
Figure 1-3 Schematic of key components and concepts in the establishment of a greenfield irrigation development
Figure 1-4 The Victoria catchment
Figure 2-1 Schematic diagram of key natural components and concepts in the establishment of a greenfield irrigation development
Figure 2-2 Soil sampling in the West Baines catchment
Figure 2-3 Surface geology of the Victoria catchment
Figure 2-4 Physiographic units of the Victoria catchment
Figure 2-5 Major geological basins and provinces of the Victoria catchment
Figure 2-6 The soil generic groups (SGGs) of the Victoria catchment produced by digital soil mapping
Figure 2-7 Brown Vertosol SGG 9 soils on alluvial plains along the West Baines River. Gilgai microrelief is evident
Figure 2-8 A plain with grey Vertosol SGG 9 soils on relict alluvial plains near Top Springs. Linear gilgai surface microrelief is evident in the mid-left distance
Figure 2-9 Well-drained red loamy soils (SGG 4.1) with iron nodules on the Sturt Plateau 37
Figure 2-10 Shallow and rocky soils (SGG 7) on laterite outcrops and scarps of deeply weathered landscapes
Figure 2-11 (a) Surface soil pH (top 10 cm) of the Victoria catchment as predicted by digital soil mapping and (b) reliability of the prediction
Figure 2-12 (a) Soil thickness of the Victoria catchment as predicted by digital soil mapping and (b) reliability of the prediction
Figure 2-13 (a) Soil surface texture of the Victoria catchment as predicted by digital soil mapping and (b) reliability of the prediction
Figure 2-14 (a) Soil permeability of the Victoria catchment as predicted by digital soil mapping and (b) reliability of the prediction
Figure 2-15 (a) Available water capacity in the upper 100 cm of the soil profile (AWC 100) as

predicted by digital soil mapping in the Victoria catchment and (b) reliability of the prediction 44

Figure 2-16 (a) Surface rockiness in soils of the Victoria catchment represented by presence or absence as predicted by digital soil mapping and (b) reliability of the prediction
Figure 2-17 Historical rainfall, potential evaporation and rainfall deficit
Figure 2-18 Historical monthly rainfall (left) and time series of annual rainfall (right) in the Victoria catchment at Auvergne, Yarralin, Kalkarindji and Top Springs
Figure 2-19 Historical monthly potential evaporation (PE) (left) and time series of annual PE (right) in the Victoria catchment at Auvergne, Yarralin, Kalkarindji and Top Springs
Figure 2-20 (a) Coefficient of variation (CV) of annual rainfall and (b) the CV of annual rainfall plotted against mean annual rainfall for 99 rainfall stations around Australia
Figure 2-21 Runs of wet and dry years at Auvergne, Yarralin, Kalkarindji and Top Springs (1890 to 2022)
Figure 2-22 Percentage change in rainfall and potential evaporation per degree of global warming for the 32 Scenario C simulations relative to Scenario A values for the Victoria catchment
Figure 2-23 Spatial distribution of mean annual rainfall across the Victoria catchment under scenarios (a) Cwet, (b) Cmid and (c) Cdry
Figure 2-24 (a) Monthly rainfall and (b) potential evaporation for the Victoria catchment under scenarios A and C
Figure 2-25 Simplified schematic diagram of terrestrial water balance in the Victoria catchment
Figure 2-26 Simplified regional geology of the Victoria catchment
Figure 2-27 Simplified regional hydrogeology of the Victoria catchment
Figure 2-28 Groundwater dependent ecosystems at Kidman Springs
Figure 2-29 Major types of aquifers occurring beneath the Victoria catchment
Figure 2-30 Simplified regional hydrogeology of the Victoria catchment relative to the entire spatial extent of the Cambrian limestone across large parts of the Northern Territory
Figure 2-31 Lonely Spring surrounded by dense spring-fed vegetation
Figure 2-32 Groundwater bore yields for the major aquifers across the Victoria catchment 69
Figure 2-33 Groundwater salinity for the major aquifers in the Victoria catchment
Figure 2-34 Bulls Head Spring surrounded by dense spring-fed vegetation
Figure 2-35 Groundwater bore yields for minor aquifers across the Victoria catchment
Figure 2-36 Jasper Gorge a spectacular sandstone gorge dissecting extensive plateau of low open woodlands and spinifex on shallow and rocky soils
Figure 2-37 Groundwater salinity for the minor aquifers in the Victoria catchment
Figure 2-38 Annual recharge estimates for the Victoria catchment

Figure 2-39 Summary of recharge statistics to outcropping areas of key hydrogeological units across the Victoria catchment
Figure 2-40 Spatial distribution of groundwater discharge classes including surface water – groundwater connectivity across the Victoria catchment
Figure 2-41 Modelled streamflow under natural conditions
Figure 2-42 Streamflow observation data availability in the Victoria catchment
Figure 2-43 Median annual streamflow (50% exceedance) in the Victoria catchment under Scenario A
Figure 2-44 (a) 20% and (b) 80% exceedance of annual streamflow in the Victoria catchment under Scenario A
Figure 2-45 Catchment area and elevation profile along the Victoria River from upstream of Kalkarindji to its mouth
Figure 2-46 Mean annual (a) rainfall and (b) runoff across the Victoria catchment under Scenario A
Figure 2-47 Annual runoff at (a) 20%, (b) 50% and (c) 80% exceedance across the Victoria catchment under Scenario A
Figure 2-48 Runoff in the Victoria catchment under Scenario A showing (a) time series of annual runoff and (b) monthly runoff averaged across the catchment
Figure 2-49 Flood inundation map of the Victoria catchment
Figure 2-50 Flood inundation across the Victoria catchment for a flood event of 1 in 18 annual exceedance probability (AEP) in March 2023
Figure 2-51 Peak flood discharge and annual exceedance probability (AEP) at (a) gauge 8110006 (West Baines River at Victoria Highway) and (b) gauge 8110007 (Victoria River at Coolibah Homestead)
Figure 2-52 Riparian vegetation along the West Baines River in the Victoria catchment. These areas are subject to regular flooding and the riparian vegetation plays an important role in regulating stream water quality
Figure 2-53 Minimum dry-season flow observed at gauging stations 8110006, 8110007 and 8110113
Figure 2-54 Minimum monthly flow over 132 years of simulation for October, November and December
Figure 2-55 Instream waterhole evolution in a reach of the Flinders River
Figure 2-56 Streamflow gauging station in the Victoria catchment
Figure 2-57 Location of river reaches containing permanent water in the Victoria catchment 96
Figure 2-58 Baseflow water quality in the Victoria catchment for parameters (a) electrical conductivity (EC), (b) chloride concentration, (c) total alkalinity, (d) calcium to sodium ratio, (e) silica concentration and (f) turbidity

Figure 3-1 Schematic diagram of key components of the living and built environment to be considered in establishing a greenfield irrigation development
Figure 3-2 Conceptual diagram of selected ecological values and assets of the Victoria catchment
Figure 3-3 Location of protected areas and important wetlands within the Victoria catchment Assessment area
Figure 3-4 Observed locations of barramundi (<i>Lates calcarifer</i>) and its modelled probability of occurrence in the Victoria catchment
Figure 3-5 Observed locations of grunters in the Victoria catchment
Figure 3-6 Red-capped plover walking along a shore 123
Figure 3-7 Distribution of species listed under the Environment Protection and Biodiversity Conservation Act and by the NT Government in the Victoria catchment
Figure 3-8 Boundaries of the Australian Bureau of Statistics Statistical Area Level 2 (SA2) regions used for demographic data in this analysis and the Katherine Daly tourism region
Figure 3-9 Land use classification for the Victoria catchment
Figure 3-10 Regions in the Northern Prawn Fishery136
Figure 3-11 Main commodity mineral occurrences and exploration tenements in the Victoria catchment
Figure 3-12 Jasper Gorge is seasonally accessible on the Buchanan Highway
Figure 3-13 Road rankings and conditions for the Victoria catchment
Figure 3-14 Roads accessible to Type 2 vehicles across the Victoria catchment: minor roads are not classified
Figure 3-15 Common configurations of heavy freight vehicles used for transporting agricultural goods in Australia
Figure 3-16 Road condition and distance to market impact the economics of development in the Victoria catchment
Figure 3-17 Mean speed achieved for freight vehicles on the Victoria catchment roads 147
Figure 3-18 Annual amounts of trucking in the Victoria catchment and the locations of pastoral properties
Figure 3-19 Electricity generation and transmission network in the Victoria catchment
Figure 3-20 Solar photovoltaic capacity factors in the Victoria River catchment
Figure 3-21 Wind capacity factors in the Victoria River catchment
Figure 3-22 Location, type and volume of annual licensed surface water and groundwater entitlements
Figure 3-23 Colonial frontier massacres in the Victoria catchment
Figure 3-24 Aboriginal freehold land in the Victoria catchment as at November 2023

Figure 3-25 Native title claims and determinations in the Victoria catchment as at November 2023
Figure 3-26 The Victoria catchment and neighbouring water plans and water control districts
Figure 4-1 Schematic of agriculture and aquaculture enterprises as well as crop and/or forage integration with existing beef enterprises to be considered in the establishment of a greenfield irrigation development
Figure 4-2 Area (ha) of the Victoria catchment mapped in each of the land suitability classes for 14 selected land use combinations (crop group × season × irrigation type)
Figure 4-3 Agricultural versatility index map for the Victoria catchment
Figure 4-4 Climate comparisons of Victoria catchment sites with established irrigation areas at Katherine (NT) and Kununurra (WA)
Figure 4-5 Annual cropping calendar for irrigated agricultural options in the Victoria catchment
Figure 4-6 Soil wetness indices that indicate when seasonal trafficability constraints are likely to occur on Vertosols (high clay), Kandosols (sandy loam) and sand at Kidman Springs for (a) a threshold of 70% of plant available water capacity (PAWC) and (b) 80% of PAWC
Figure 4-7 Influence of planting date on rainfed grain sorghum yield at Kidman Springs for a (a) Kandosol and (b) Vertosol
Figure 4-8 Influence of available irrigation water on grain sorghum yields for planting dates of (a) 1 February and (b) 1 August, for a Kandosol with a Kidman Springs climate
Figure 4-9 Fluctuations in seedless watermelon prices at Melbourne wholesale markets from April 2020 to February 2023
Figure 4-10 Modelled land suitability for Crop Group 7 (e.g. sorghum (grain) or maize) using furrow irrigation in the (a) wet season and (b) dry season
Figure 4-11 Sorghum (grain)
Figure 4-12 Modelled land suitability for mungbean (Crop Group 10) in the dry season using (a) furrow irrigation and (b) spray irrigation
Figure 4-13 Mungbean
Figure 4-14 Modelled land suitability for soybean (Crop Group 10) in the dry season using (a) furrow irrigation and (b) spray irrigation
Figure 4-15 Soybean
Figure 4-16 Modelled land suitability for peanut (Crop Group 6) using spray irrigation in the (a) wet season and (b) dry season
Figure 4-17 Peanut
Figure 4-18 Modelled land suitability for cotton (Crop Group 7) using furrow irrigation in the (a) wet season and (b) dry season

Figure 4-19 Cotton
Figure 4-20 Modelled land suitability for Rhodes grass (Crop Group 14) using (a) spray irrigation and (b) furrow irrigation
Figure 4-21 Rhodes grass
Figure 4-22 Modelled land suitability for Cavalcade (Crop Group 13) in the wet season using (a) spray irrigation and (b) furrow irrigation
Figure 4-23 Lablab 253
Figure 4-24 Modelled land suitability for (a) cucurbits (e.g. rockmelon, Crop Group 3) using trickle irrigation in the dry season and (b) root crops such as onion (Crop Group 6) using spray irrigation in the wet season
Figure 4-25 Rockmelon 257
Figure 4-26 Modelled land suitability for (a) mango (Crop Group 1) and (b) lime (Crop Group 2), both grown using trickle irrigation
Figure 4-27 Mango 260
Figure 4-28 Modelled land suitability for Indian sandalwood (Crop Group 15) grown using (a) trickle or (b) furrow irrigation
Figure 4-29 Indian sandalwood and host plants
Figure 4-30 Black tiger prawns
Figure 4-31 Barramundi
Figure 4-32 Schematic of marine aquaculture farm
Figure 4-33 Land suitability in the Victoria catchment for marine species aquaculture in (a) lined ponds and (b) earthen ponds
Figure 4-34 Land suitability in the Victoria catchment for freshwater species aquaculture in (a) lined ponds and (b) earthen ponds
Figure 5-1 Schematic of key engineering and agricultural components to be considered in the establishment of a water resource and greenfield irrigation development
Figure 5-2 Key hydrogeological units of the Victoria catchment
Figure 5-3 Hydrogeological cross-section through the Cambrian Limestone Aquifer in the east of the Victoria catchment
Figure 5-4 Groundwater pumps powered by the wind provide water points for cattle
Figure 5-5 Depth to the top of the Cambrian Limestone Aquifer
Figure 5-6 Depth to standing water level (SWL) of the Cambrian Limestone Aquifer
Figure 5-7 Conceptual block model of part of the Cambrian Limestone Aquifer near Top Springs along the eastern margin of the Victoria catchment

Figure 5-8 Location of hypothetical groundwater extraction sites in relation to modelled groundwater level reporting sites and modelled discharge at key springs for the Cambrian Limestone Aquifer
Figure 5-9 Perennial localised discharge from the Cambrian Limestone Aquifer to Old Top Spring
Figure 5-10 Modelled drawdown in groundwater level in the Cambrian Limestone Aquifer (CLA) under scenarios (a) B9, (b) B12 and (c) B15 in approximately 2060
Figure 5-11 Outcropping and subcropping areas of the Proterozoic dolostone aquifers in the Victoria catchment
Figure 5-12 North-west to south-east cross-section traversing the dolostone aquifers hosted in the Bullita Group
Figure 5-13 Water sampling at Kidman Springs
Figure 5-14 The Ord River Irrigation Area 290 km west of Timber Creek has a similar climate and some similar soils and climate setting to the Victoria catchment
Figure 5-15 Types of managed aquifer recharge
Figure 5-16 Managed aquifer recharge opportunities for the Victoria catchment, independent of distance from a water source for recharge
Figure 5-17 Managed aquifer recharge (MAR) opportunities in the Victoria catchment (a) within 5 km of major rivers
Figure 5-18 Topographically more favourable potential storage sites in the Victoria catchment based on minimum cost per megalitre storage capacity
Figure 5-19 Topographically and hydrologically more favourable potential storage sites in the Victoria catchment based on minimum cost per megalitre yield at the dam wall
Figure 5-20 Victoria catchment hydro-electric power generation opportunity map
Figure 5-21 EPBC and NT listed species, water-dependent assets and aggregated modelled habitat in the vicinity of the potential dam site on Leichhardt Creek AMTD 26 km
Figure 5-22 Potential dam site on Leichhardt Creek AMTD 26 km: cost and yield at the dam wall
Figure 5-23 Potential dam site on Victoria River AMTD 283 km: cost and yield at the dam wall
Figure 5-24 Listed species, water-dependent assets and aggregated modelled habitat in the vicinity of the potential dam site on the Victoria River AMTD 283 km
Figure 5-25 Schematic cross-section diagram of sheet piling weir
Figure 5-26 Rectangular ringtank and 500 ha of cotton in the Flinders catchment (Queensland)
Figure 5-27 Suitability of land for large farm-scale ringtanks in the Victoria catchment

Figure 5-28 Annual reliability of diverting annual system and reach target volumes for varying pump start thresholds
Figure 5-29 Victoria River has the second largest median annual streamflow of any river in the NT
Figure 5-30 Annual reliability of diverting annual system and reach target volumes for varying pump start thresholds assuming end-of-system flow requirement before pumping can commence is 500 GL
Figure 5-31 Annual reliability of diverting annual system and reach target volumes for varying pump start thresholds assuming end-of-system flow requirement before pumping can commence is 700 GL
Figure 5-32 50% annual exceedance (median) streamflow relative to Scenario A in the Victoria catchment for varying end-of-system (EOS) requirements assuming a pump start threshold of 1000 ML/day and a pump capacity of 30 days
Figure 5-33 80% annual exceedance streamflow relative to Scenario A in the Victoria catchment for varying end-of-system (EOS) requirements assuming a pump start threshold of 1000 ML/day and a pump capacity of 30 days
Figure 5-34 Annual reliability of diverting annual system and reach targets for varying pump rates assuming a pump start flow threshold of 1000 ML/day
Figure 5-35 Julius Dam on the Leichhardt River
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoriacatchment
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358Figure 6-1 Schematic diagram of key components affecting the commercial viability of a potential greenfield irrigation development367
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358Figure 6-1 Schematic diagram of key components affecting the commercial viability of a potential greenfield irrigation development367Figure 6-2 Locations of the five dams used in this review389
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358Figure 6-1 Schematic diagram of key components affecting the commercial viability of a potential greenfield irrigation development367Figure 6-2 Locations of the five dams used in this review389Figure 6-3 Trends in gross value of agricultural production (GVAP) in (a) Australia and (b) the NT over 40 years (1981–2021)391
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358Figure 6-1 Schematic diagram of key components affecting the commercial viability of a potential greenfield irrigation development367Figure 6-2 Locations of the five dams used in this review389Figure 6-3 Trends in gross value of agricultural production (GVAP) in (a) Australia and (b) the NT over 40 years (1981–2021)391Figure 6-4 National trends for increasing gross value of irrigated agricultural production (GVIAP) as available water supplies have increased for (a) fruits, (b) vegetables, (c) fruits and vegetables combined, and (d) total agriculture393
Figure 5-36 Most economically suitable locations for large farm-scale gully dams in the Victoria catchment348Figure 5-37 Suitability of soils for construction of gully dams in the Victoria catchment349Figure 5-38 Reported conveyance losses from irrigation systems across Australia356Figure 5-39 Efficiency of different types of irrigation system358Figure 6-1 Schematic diagram of key components affecting the commercial viability of a potential greenfield irrigation development367Figure 6-2 Locations of the five dams used in this review389Figure 6-3 Trends in gross value of agricultural production (GVAP) in (a) Australia and (b) the NT over 40 years (1981–2021)391Figure 6-4 National trends for increasing gross value of irrigated agricultural production (GVIAP) as available water supplies have increased for (a) fruits, (b) vegetables, (c) fruits and vegetables combined, and (d) total agriculture393Figure 6-5 Regions used in the input–output (I–O) analyses relative to the Victoria catchment Assessment area399

Figure 7-2 Map of the Victoria catchment and the marine region showing the locations of the river system modelling nodes at which flow–ecology dependencies were assessed (numbered) and the locations of hypothetical water resource developments
Figure 7-3 Habitat weighted change in important flow dependencies for barramundi by scenario across model nodes
Figure 7-4 Spatial heatmap of change in important flow dependencies for barramundi, considering their distribution across the catchment
Figure 7-5 The change in barramundi flow dependencies under the various water harvesting scenarios at sample nodes across the catchment, showing response to system targets and pump-start thresholds
Figure 7-6 Habitat weighted change in important flow dependencies for shorebirds under the various scenarios across the model nodes
Figure 7-7 Waterhole fringed by boab trees, Victoria catchment
Figure 7-8 Change in important mangroves flow dependencies under the various scenarios 435
Figure 7-9 Riverine landscape, Victoria catchment
Figure 7-10 Spatial heatmap of change to asset–flow dependencies across the Victoria catchment, considering change across all assets in the locations in which each of the assets was assessed
Figure 7-11 Mean change to assets' important flow dependencies across scenarios and nodes
Figure 7-12 Mean change to assets' important flow dependencies across water harvesting increments of system target and pump-start threshold, with no end-of-system (EOS) requirement and a pump rate of 30 days
Figure 7-13 The invasion curve with biosecurity actions taken at various stages
Figure 7-14 Farm biosecurity signage available through www.farmbiosecurity.com.au

List of tables

Table 2-1 Victoria catchment physiographic unit descriptions, shortened names, areas andpercentage areas
Table 2-2 Soil generic groups (SGGs), descriptions, management considerations and correlationsto Australian Soil Classification (ASC) for the Victoria catchment
Table 2-3 Area and proportions covered by each soil generic group (SGG) in the Victoriacatchment
Table 2-4 Projected sea-level rise for the coast of the Victoria catchment
Table 2-5 Streamflow metrics at gauging stations in the Victoria catchment under Scenario A. 84
Table 3-1 Freshwater, marine and terrestrial ecological assets with freshwater flowdependences117
Table 3-2 Definition of threatened categories under the Commonwealth <i>Environment</i> <i>Protection and Biodiversity Conservation Act 1999</i> and the NT wildlife classification system 126
Table 3-3 Major demographic indicators for the Victoria catchment
Table 3-4 Socio-Economic Indexes for Areas (SEIFA) scores of relative socio-economic advantagefor the Victoria catchment130
Table 3-5 Key employment data for the Victoria catchment
Table 3-6 Value of agricultural production for the Victoria catchment (estimated) and the NT for2020-21133
Table 3-7 Global water consumption in the mining and refining of selected metals 138
Table 3-8 Overview of commodities (excluding livestock) annually transported into and out ofthe Victoria catchment
Table 3-9 Schools servicing the Victoria catchment
Table 3-10 Number and percentage of unoccupied dwellings and population for the Victoriacatchment158
Table 4-1 Land suitability classes based on FAO (1976, 1985) as used in the Assessment 198
Table 4-2 Crop groups and individual land uses evaluated for irrigation (and rainfed) potential
Table 4-3 Qualitative land evaluation observations for Victoria catchment areas A to E shown inFigure 4-3202
Table 4-4 Crop options for which performance was evaluated in terms of water use, yields andgross margins204
Table 4-5 Soil water content at sowing, and rainfall for the 90-day period following sowing for three sowing dates, based on a Kidman Springs climate on a Vertosol
Table 4-6 Performance metrics for broadacre cropping options in the Victoria catchment:applied irrigation water, crop yield and gross margin (GM) for four environments

Table 4-7 Breakdown of variable costs relative to revenue for broadacre crop options
Table 4-8 Sensitivity of cotton crop gross margins (\$/ha) to variation in yield, lint prices anddistance to gin218
Table 4-9 Sensitivity of forage (Rhodes grass) crop gross margins (\$/ha) to variation in yield andhay price218
Table 4-10 Performance metrics for horticulture options in the Victoria catchment: annualapplied irrigation water, crop yield and gross margin
Table 4-11 Sensitivity of watermelon crop gross margins (\$/ha) to variation in melon prices andfreight costs221
Table 4-12 Performance metrics for plantation tree crop options in the Victoria catchment:annual applied irrigation water, crop yield and gross margin222
Table 4-13 Likely annual irrigated crop planting windows, suitability, and viability in the Victoriacatchment225
Table 4-14 Sequential cropping options for Kandosols 226
Table 4-15 Production and financial outcomes from the different irrigated forage and beefproduction options for a representative property in the Victoria catchment
Table 4-16 Summary information relevant to the cultivation of cereals, using sorghum (grain) asan example233
Table 4-17 Summary information relevant to the cultivation of pulses, using mungbean as anexample237
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean asan example240
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example
Table 4-18 Summary information relevant to the cultivation of oilseed crops, using soybean as an example

Table 5-1 Summary of capital costs, yields and costs per megalitre of supply, includingoperation and maintenance (O&M)285
Table 5-2 Opportunity-level estimates of the potential scale of groundwater resourcedevelopment in the Victoria catchment289
Table 5-3 Summary of estimated costs for a 250 ha irrigation development using groundwater
Table 5-4 Mean modelled groundwater levels at ten locations within the Cambrian Limestone Aquifer under extraction scenarios A, B, C and D Locations are shown in Figure 5-8
Table 5-5 Mean modelled groundwater discharge by evapotranspiration and localised springdischarge from the Cambrian Limestone Aquifer at spring complexes along its western marginnear Top Springs302
Table 5-6 Potential dam sites in the Victoria catchment examined as part of the Assessment 320
Table 5-7 Summary comments for potential dams in the Victoria catchment
Table 5-8 Estimated construction cost of 3 m high sheet piling weir
Table 5-9 Effective volume after net evaporation and seepage for hypothetical ringtanks ofthree mean water depths, under three seepage rates, near the Victoria River Downs in theVictoria catchment
Table 5-10 Indicative costs for a 4000 ML ringtank
Table 5-11 Annualised cost for the construction and operation of three ringtank configurations
Table 5-12 Levelised costs for two hypothetical ringtanks of different capacities under threeseepage rates near Victoria River Downs in the Victoria catchment
Table 5-13 Actual costs of four gully dams in northern Queensland 350
Table 5-14 Cost of three hypothetical large farm-scale gully dams of capacity 4 GL
Table 5-15 High-level breakdown of capital costs for three hypothetical large farm-scale gullydams of capacity 4 GL351
Table 5-16 Effective volumes and cost per megalitre for three 4 GL gully dams with variousmean depths and seepage loss rates based on climate data at Victoria River Downs Station inthe Victoria catchment
Table 5-17 Cost of construction and operation of three hypothetical 4 GL gully dams
Table 5-18 Equivalent annualised cost and effective volume for three hypothetical 4 GL gullydams with various mean depths and seepage loss rates based on climate data at Victoria RiverDowns Station in the Victoria catchment
Table 5-19 Summary of conveyance and application efficiencies 355
Table 5-20 Water distribution and operational efficiency as nominated in water resource plansfor four irrigation water supply schemes in Queensland355
Table 5-21 Application efficiencies for surface, spray and micro irrigation systems

Table 6-1 Types of questions that users can answer using the tools in this chapter
Table 6-2 Indicative capital costs for developing a representative irrigation scheme in theVictoria catchment
Table 6-3 Assumed indicative capital and operating costs for new off- and on-farm irrigationinfrastructure375
Table 6-4 Price irrigators can afford to pay for water, based on the type of farm, the farm water use and the farm annual gross margin (GM), while meeting a target 10% internal rate of return (IRR)
Table 6-5 Farm gross margins (GMs) required in order to cover the costs of off-farm water infrastructure (at the supplier's target internal rate of return (IRR))
Table 6-6 Water pricing required in order to cover costs of off-farm irrigation schemedevelopment (dam, water distribution, and supporting infrastructure) at the investors targetinternal rate of return (IRR)380
Table 6-7 Farm gross margins (GMs) required in order to achieve target internal rates of return (IRR), given various capital costs of farm development (including an on-farm water source) 381
Table 6-8 Equivalent costs of water per ML for on-farm water sources with various capital costs of development, at the internal rate of return (IRR) targeted by the investor
Table 6-9 Risk adjustment factors for target farm gross margins (GMs), accounting for the effects of the reliability and severity (level of farm performance in 'failed' years) of the periodic risk of water reliability
Table 6-10 Risk adjustment factors for target farm gross margins (GMs) accounting for theeffects of reliability and the timing of periodic risks386
Table 6-11 Risk adjustment factors for target farm gross margins (GMs), accounting for theeffects of learning risks387
Table 6-12 Summary characteristics of the five dams used in this review
Table 6-13 Summary of key issues and potential improvements arising from a review of recentdam developments390
Table 6-14 Indicative costs of agricultural processing facilities
Table 6-15 Indicative costs of road and electricity infrastructure
Table 6-16 Indicative road transport costs between the Victoria catchment and key markets andports395
Table 6-17 Indicative costs of community facilities 396
Table 6-18 Key 2021 data comparing the Victoria catchment with the related I–O analysis regions 399
Table 6-19 Regional economic impact estimated for the total construction phase of a new irrigated agricultural development (based on two independent I–O models)

Table 6-20 Estimated regional economic impact per year in the Victoria catchment resulting from four scales of direct increase in agricultural output (rows) for the different categories of agricultural activity (columns) from two I–O models
Table 6-21 Estimated impact on annual household incomes and full-time equivalent (FTE) jobs within the Victoria catchment resulting from four scales of direct increase in agricultural output (rows) for the various categories of agricultural activity (columns)
Table 7-1 Water resource development and climate scenarios explored in the ecology analysis
Table 7-2 Ecological assets used in the Victoria Water Resource Assessment
Table 7-3 Descriptive qualitative values for the flow dependencies modelling as percentilechange of the hydrometrics423
Table 7-4 Scenarios of different hypothetical instream dam locations showing end-of-system(EOS) flow and mean changes in ecology flows for groups of assets across each asset'srespective catchment assessment nodes
Table 7-5 Examples of significant pest and disease threats to plant industries in the Victoriacatchment
Table 7-6 Regional weed priorities and their management actions in the Victoria catchment. 450
Table 7-7 High-risk freshwater pest fish threats to the Victoria catchment
Table 7-8 Water quality variables reviewed – their impacts on the environment, aquatic ecology and human health

As Australia's national science agency and innovation catalyst, CSIRO is solving the greatest challenges through innovative science and technology.

CSIRO. Unlocking a better future for everyone.

Contact us 1300 363 400 +61 3 9545 2176 csiroenquiries@csiro.au csiro.au For further information Environment Dr Chris Chilcott +61 8 8944 8422 chris.chilcott@csiro.au

Environment

Dr Cuan Petheram +61 467 816 558 cuan.petheram@csiro.au

Agriculture and Food Dr Ian Watson +61 7 4753 8606 ian.watson@csiro.au