Neil Sims and Blair Trewin
Colette Leary
John Clarke and Lynette Bettio
Naomi Benger, Pep Canadell, Chris Chapman, Michael Grose, Benoit Legresy, Zoe Loh, Jannatun Nahar, Acacia Pepler, Hamish Ramsay, Phil Reid, Bronte Tilbrook, Blair Trewin and Xuebin Zhang.
Nada Derek, Catia Domingues, Andrew Dowdy, David Etheridge, Ming Feng, Ben Hague, Paul Krummel, Sugata Narsey and Bea Peña-Molino.
Chris Gerbing and Sharon Cooper
Siobhan Duffy
This document should be cited as:
State of the Climate 2024, CSIRO and Bureau of Meteorology, © Government of Australia.
Many sections in this report draw on the Working Group I part of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (https://www.ipcc.ch/report/ar6/wg1/), released in 2021 (hereafter referred to as IPCC AR6). Specific IPCC assessment findings or material used are cited in the individual sections below. The full citation for the IPCC report is:
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.
State of the Climate 2012: http://www.bom.gov.au/state-of-the-climate/2012/Climate-Snapshot-2012-Brochure.pdf
State of the Climate 2014: http://www.bom.gov.au/state-of-the-climate/2014/
State of the Climate 2016: www.bom.gov.au/state-of-the-climate/2016/
State of the Climate 2018: http://www.bom.gov.au/state-of-the-climate/2018/
State of the Climate 2020: http://www.bom.gov.au/state-of-the-climate/2020/
State of the Climate 2022: http://www.bom.gov.au/state-of-the-climate/ 2022/
Blunden, J. and T. Boyer, Eds., 2024: “State of the Climate in 2023”. Bull. Amer. Meteor. Soc., 105(8), Si–S484, https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-climate/
CSIRO and Australian Bureau of Meteorology 2015, ‘Climate Change in Australia’, Climate Change in Australia, http://www.climatechangeinaustralia.gov.au/en
Bulletin of the American Meteorological Society. Explaining Extreme Events from a Climate Perspective’, https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-from-a-climate-perspective/
The Global Carbon Project: http://www.globalcarbonproject.org
World Meteorological Organization WMO ‘Statement on the Status of the Global Climate https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate
State of the Environment 2021: https://soe.dcceew.gov.au/
Fifth US National Climate Assessment, 2023: https://nca2023.globalchange.gov/
Australian Bureau of Meteorology Climate Information: http://www.bom.gov.au/climate/change/
Australian Bureau of Meteorology Water Information: http://www.bom.gov.au/water/
Kennaook/Cape Grim greenhouse gas data: https://www.csiro.au/greenhouse-gases/
CSIRO Oceans and Atmosphere: Sea-level data, Sea-Level Rise: https://research.csiro.au/slrwavescoast/sea-level/
National Snow and Ice Data Centre (USA): https://nsidc.org
NOAA Global greenhouse gas reference network: https://gml.noaa.gov/ccgg/about.html
Global Climate Observing System: https://gcos.wmo.int/en/home
Copernicus Climate Change Service: https://climate.copernicus.eu/
WMO Global Atmosphere Watch: https://community.wmo.int/en/activity-areas/gaw
Huang, B., and coauthors. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30, 8179-8205, https://doi.org/10.1175/JCLI-D-16-0836.1
Trewin, B., and coauthors. (2020). An updated long-term homogenized daily temperature data set for Australia. Geoscience Data Journal, 7, 149-169, https://doi.org/10.1002/gdj3.95
Australian temperature data used in figures in this section are drawn from version 2.5 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020) (http://www.bom.gov.au/climate/data/acorn-sat/). Sea surface temperature data are drawn from version 5 of the Extended Reconstructed Sea Surface Temperature (ERSSTv5) dataset (Huang et al., 2017) (www.esrl.noaa.gov/psd/).
The figure showing global temperatures is adapted and updated from Figure 4 in the World Meteorological Organization (WMO) Statement on the Status of Global Climate in 2012 (WMO_1108). Global temperature data used are a mean of four different global data sets as described in IPCC AR6 Section 2.3.1.1.3 and Table 2.3.
Citations for key points are in the associated sections below.
Dittus, A.J., Karoly, D.J., Lewis, S.C. and Alexander, L.V. (2014). An investigation of some unexpected frost day increases in southern Australia. Aust. Met. Oceanogr. J., 64, 261-271. DOI:10.22499/2.6404.002
Grainger, S., and coauthors. (2022). Estimating the uncertainty of Australian area-average temperature anomalies. Int. J. Climatol., 42, 2815-2834. https://doi.org/10.1002/joc.7392
Nairn, J.R. and Fawcett, R.J.B. (2015). The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Heath, 12, 227-253. https://doi.org/10.3390/ijerph120100227
Pepler, A., Ashcroft, L. and Trewin, B. (2018). The relationship between the subtropical ridge and Australian temperatures. J. South. Hem. Earth Sys. Sci., 68, 201-214. https://doi.org/10.1071/ES18011
Trewin, B. (2018). The Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) version 2. Bureau Research Report 32, Bureau of Meteorology. http://www.bom.gov.au/research/publications/researchreports/BRR-032.pdf
Trewin, B., and coauthors. (2020). An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., 7, 149-169. https://doi.org/10.1002/gdj3.95
Australian temperature data used in this section are drawn from version 2.5 of the Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset (Trewin et al., 2020) (http://www.bom.gov.au/climate/data/acorn-sat/).
Abram, N.J., Hargreaves, J.A., Wright, N.M., Thirumalai, K., Ummenhofer, C.C. and England, M.H. (2020). Palaeoclimate perspectives on the Indian Ocean Dipole. Quart. Sci. Rev., 237, 106302. https://doi.org/10.1016/j.quascirev.2020.106302
Grose, M., Timbal, B., Wilson, L., Bathols, J. and Kent, D. (2015). The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Met. Oceanogr. J., 65, 90-106. https://doi.org/10.1071/ES15007
Pepler, A., Hope, P. and Dowdy, A. (2019). Long-term changes in southern Australian anticyclones and their impacts. Clim. Dyn, 53, 4701-4714. https://doi.org/10.1007/s00382-019-04819-9
Pepler, A. (2020). Record lack of cyclones in Australia during 2019. Geophys. Res. Lett., 47, e2020GL088488. https://doi.org/10.1029/2020GL088488
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302. https://doi.org/10.1007/s00382-020-05588-6
Pepler, A.S. and Dowdy, A.J. (2022). Australia’s future extratropical cyclones. J. Climate, 35, 7795-7810. https://doi.org/10.1175/JCLI-D-22-0312.1
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034. https://doi.org/10.1002/joc.3492
The assessment of changes in climate influences draws on the assessment findings of IPCC AR6: sections 2.4.1.2 (SAM), 2.4.2 (ENSO) and 2.4.3 (IOD).
Canadell, J.G., and coauthors. (2018, December). Higher than expected CO2 fertilisation inferred from leaf to global observations. In AGU Fall Meeting Abstracts.
Canadell, J.G., Meyer, C.P., Cook, G.D., Dowdy, A., Briggs, P.R., Knauer, J., Pepler, A. and Haverd, V. (2021). Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature communications, 12(1), pp.1-11. https://doi.org/10.1038/s41467-021-27225-4
Clarke, H., Pitman, A.J., Kala, J., Carouge, C., Haverd, V. & Evans, J. (2016). An investigation of future fuel load and fire weather in Australia. Climatic Change, 139 (3), 591-605. https://doi.org/10.1007/s10584-016-1808-9
Di Virgilio, G., Evans, J.P., Blake, S.A., Armstrong, M., Dowdy, A.J., Sharples, J. and McRae, R. (2019). Climate change increases the potential for extreme wildfires. Geophysical Research Letters, 46(14), pp.8517-8526. https://doi.org/10.1029/2019GL083699
Dowdy, A.J., Fromm, M.D. and McCarthy, N. (2017). Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research: Atmospheres, 122(14), pp.7342-7354. https://doi.org/10.1002/2017JD026577
Dowdy, A.J. (2018). Climatological Variability of Fire Weather in Australia. Journal of Applied Meteorology and Climatology, 57, 221-234. https://doi.org/10.1175/JAMC-D-17-0167.1
Dowdy, A.J. and Pepler, A. (2018). Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions. Geophysical Research Letters, 45, 2005-2013. https://doi.org/10.1002/2017gl076654
Dowdy, A.J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S.L., Evans, J.P., Di Virgilio, G. and McCarthy, N. (2019). Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-46362-x
Dowdy, A.J. (2020). Seamless climate change projections and seasonal predictions for bushfires in Australia. Journal of Southern Hemisphere Earth Systems Science, 70(1), pp.120-138. https://doi.org/10.1071/ES20001
Harris, S. and Lucas, C. (2019). Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE, 14. https://doi.org/10.1371/journal.pone.0222328
Hughes, L. (2003), Climate change and Australia: Trends, projections and impacts. Austral Ecology, 28: 423-443. https://doi.org/10.1046/j.1442-9993.2003.01300.x
McArthur, A.G. (1967). Fire behaviour in eucalypt forests. Australia. Forestry and Timber Bureau : Leaflet ; no. 107, Forestry and Timber Bureau, 36. https://nla.gov.au/nla.cat-vn2275488
Van Oldenborgh, G.J., and coauthors. Natural Hazards and Earth System Sciences, 21(3), pp.941-960. https://doi.org/10.5194/nhess-21-941-2021
The figure is updated and adapted from Dowdy (2020). https://doi.org/10.1071/ES20001
Rauniyar, S.P., Hope, P., Power, S.B., Grose, M and Jones, D. (2023). The role of internal variability and external forcing on southwestern Australian rainfall: prospects for very wet or dry years. Sci Rep 13, 21578. https://doi.org/10.1038/s41598-023-48877-w
Devanand, A. and coauthors. (2024). Australia’s Tinderbox Drought: an extreme natural event likely worsened by human-caused climate change. Science Advances, 10, eadj3460. https://doi.org/10.1126/sciadv.adj3460
Evans, A., Jones, D., Smalley, R. and Lellyett, S. (2020). An enhanced gridded rainfall analysis scheme for Australia. Bureau Research Report 41, Bureau of Meteorology. http://www.bom.gov.au/research/publications/researchreports/BRR-041.pdf
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979-1996 and 1997-2015. Clim. Dyn., 56, 2289-2302. https://doi.org/10.1007/s00382-020-05588-6
Rauniyar, S.P. and Power, S.B. (2020). The impact of anthropogenic forcing and natural processes on past, present and future rainfall over Victoria, Australia. J. Climate, 33, 8087-8106. https://doi.org/10.1175/JCLI-D-19-0759.1
Timbal, B. and Drosdowsky, W. (2013). The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 1021-1034. https://doi.org/10.1002/joc.3492
Rainfall data used in this section are drawn from the Australian Gridded Climate Data (AGCD) dataset (Evans et al., 2020) (http://www.bom.gov.au/climate/austmaps/about-agcd-maps.shtml).
Grose, M.R., Boschat, G., Trewin, B., Round, V., Ashcroft, L., King, A.D., Narsey, S., and Hawkins, E. (2023) Australian climate warming: observed change from 1850 and global temperature targets. Journal of Southern Hemisphere Earth Systems Science 73, 30-43. https://doi.org/10.1071/ES22018
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052. https://doi.org/10.1007/s00382-020-05167-9
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808. https://doi.org/10.1038/s41558-018-0245-3
Pearce, K.B., Holper, P.N., Hopkins, M., Bouma, W.J., Whetton, P.H., Hennessy, K.J. and Power, S.B. (2007). Climate Change in Australia: technical report 2007. https://webarchive.nla.gov.au/awa/20080719070759/http://www.climatechangeinaustralia.gov.au/resources.php
Pepler, A.S., Dowdy, A.J. and Hope, P. (2021). The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Climate Dynamics, 56(7), pp.2289-2302. https://doi.org/10.1007/s00382-020-05588-6
Ayat, H., Evans, J. P., Sherwood, S. C., and Soderholm, J. (2022). Intensification of subhourly heavy rainfall. Science, 378, 655–659. https://doi.org/10.1126/science.abn8657
Bao, J., Sherwood, S.C., Alexander, L.V. and Evans, J.P. (2017). Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Chang., 7, 128–132. https://doi.org/10.1038/nclimate3201
Chand, S.S., Dowdy, A.J., Ramsay, H.A., Walsh, K.J.E., Tory, K. J., Power, S. B., Bell, S. S., Lavendar, S. L., Ye, H. and Kuleshov, Y (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdisciplinary Reviews: Climate Change. https://doi.org/10.1002/wcc.602
Dowdy, A.J. (2020). Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn., 54, 3041-3052. https://doi.org/10.1007/s00382-020-05167-9
Dowdy, A.J., Pepler, A., Di Luca, A., Cavicchia, L., Evans, J. P., Louis, S., McInnes, K. L. and Walsh, K. (2019). Review of Australian east coast low pressure systems and associated extremes. Climate Dynamics. https://doi.org/10.1007/s00382-019-04836-8
Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang., 8, 803–808. https://doi.org/10.1038/s41558-018-0245-3
Holgate, C. M., Pepler, A. S., Rudeva, I., and Abram, N. J. (2023). Anthropogenic warming reduces the likelihood of drought-breaking extreme rainfall events in southeast Australia. Weather and Climate Extremes, 42, 100607. https://doi.org/10.1016/j.wace.2023.100607
Johnson, F., and coauthors. (2016). Natural hazards in Australia: floods. Climatic Change, 139(1), 21-35. https://doi.org/10.1007/s10584-016-1689-y
Knutson, T., and coauthors. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007. https://doi.org/10.1175/BAMS-D-18-0189.1
Knutson, T., and coauthors. (2020). Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101 (3): E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1
NESP (2020). Scenario analysis of climate-related physical risk for buildings and infrastructure: climate science guidelines. NESP Earth Systems and Climate Change (ESCC) Hub report for the Climate Measurement Standards Initiative, 116 pp. https://uploads-ssl.webflow.com/5f1bdaf710347301b0c01fd4/5f5c2f4cb000cab9c03025d8_CMSI%20-%20Climate%20Science%20Technical%20Summary.pdf
Osburn, L., Hope, P. and Dowdy, A. (2021). Changes in hourly extreme precipitation in Victoria, Australia, from the observational record. Weather and Climate Extremes, 31, 100294. https://doi.org/10.1016/j.wace.2020.100294
Pepler, A.S. and Dowdy, A.J. (2022). Australia’s future extratropical cyclones. J. Climate, 35, 7795-7810. https://doi.org/10.1175/JCLI-D-22-0312.1
Reid, K. J., O’Brien, T. A., King, A. D., and Lane, T. P. (2021). Extreme Water Vapor Transport during the March 2021 Sydney Floods in the Context of Climate Projections. Geophysical Research Letters, e2021GL095335. https://doi.org/10.1029/2021gl095335
Tolhurst, G., Hope, P., Osburn, L., and Rauniyar, S. (2023). Approaches to Understanding Decadal and Long-Term Shifts in Observed Precipitation Distributions in Victoria, Australia. Journal of Applied Meteorology and Climatology, 62, 3–19. https://doi.org/10.1175/JAMC-D-22-0031.1
Wasko, C. and coauthors. (2024). A systematic review of climate change science relevant to Australian design flood estimation. Hydrology and Earth System Sciences, 28, 1251-1285. https://doi.org/10.5194/hess-28-1251-2024
The material in this box draws extensively on a systematic review (Wasko et al., 2024) of evidence on trends and projections in extreme rainfall. This review is also reflected in the updated climate change guidance for engineers as published in version 4.2 of Australian Rainfall and Runoff (https://www.arr-software.org/arrdocs).
Hamed, K.H. and Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196, https://doi.org/10.1016/S0022-1694(97)00125-X
Hu, Z., Liu, S., Zhong, G., Lin, H. and Zhou, Z. (2020). Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrological Sciences Journal, 65(14), 2419-2438, https://doi.org/10.1080/02626667.2020.1810253
Turner, M. (2012). Hydrologic Reference Station selection guidelines. Bureau of Meteorology, available at http://www.bom.gov.au/water/hrs/media/static/papers/Selection_Guidelines.pdf
The analysis draws on data from all available Australian Hydrologic Reference Stations with sufficient data in the 1970−2023 period (http://www.bom.gov.au/water/hrs/).
Details of Australia’s Topographic Drainage Divisions are available at http://www.bom.gov.au/water/about/riverBasinAuxNav.shtml
Bell, S.S. and coauthors. (2019). Projections of southern hemisphere tropical cyclone track density using CMIP5 models. Climate Dynamics, 52, 6065–6079. https://doi.org/10.1007/s00382-018-4497-4
Chand, S.S., and coauthors. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. WIREs Clim Change, 10:e602. https://doi.org/10.1002/wcc.602
Callaghan, J. and Power, S.B. (2011). Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim. Dyn., 37, 647-662. https://doi.org/10.1007/s00382-010-0883-2
Chand, S.S., and coauthors. (2022). Declining tropical cyclone frequency under global warming. Nat. Clim. Chang. 12, 655–661, https://doi.org/10.1038/s41558-022-01388-4
Dowdy, A.J. (2014). Long-term changes in Australian tropical cyclone numbers. Atmos. Sci. Lett., 15: 292-298, https://doi.org/10.1002/asl2.502
Knutson, T., and coauthors. (2020). Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101, E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1
Kossin, J.P., Knapp, K.R., Olander, T.L. and Velden, C.S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of National Academy of Sciences of the United States of America, 117(22), 11975– 11980, https://doi.org/10.1073/pnas.1920849117
Nicholls, N. (1984). The southern oscillation, sea-surface temperature, and interannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661–670, https://doi.org/10.1002/joc.3370040609
Ramsay, H.A., Leslie, L.M., Lamb, P.J., Richman, M.B. and Leplastrier, M. (2008). Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment, Journal of Climate, 21(5), 1083-1103, https://doi.org/10.1175/2007JCLI1970.1
Pepler, A.S., Trewin, B. and Ganter, C. (2015). The influence of climate drivers on the Australian snow season. Aust. Met. Oceanogr. J., 65, 195-205. DOI:10.22499/2.6502.002
Snow depth data for Spencers Creek are sourced from Snowy Hydro (https://www.snowyhydro.com.au/generation/live-data/snow-depths/).
Benthuysen, J.A., Oliver, E.C.J., Chen, K. and Wernberg, T. (2020). Editorial: advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7:147. https://doi.org/10.3389/fmars.2020.00147
Huang, B., and coauthors. (2017). NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information. doi:10.7289/V5T72FNM
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T. and Zhang, H-M. (2020). Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923-2939. https://doi.org/10.1175/JCLI-D-20-0166.1
Feng, M., Caputi, N., Chandrapavan, A., Chen, M., Hart, A. and Kangas, M. (2021). Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. Journal of Marine Systems, 214, 103473, https://doi.org/10.1016/j.jmarsys.2020.103473
Hobday, A.J., and coauthors. (2016a). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238, https://doi.org/10.1016/j.pocean.2015.12.014
Hu, S. and Fedorov, A.V. (2017). The extreme El Niño of 2015–2016 and the end of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824, https://doi.org/10.1002/2017GL072908
Kajtar, J.B., Holbrook, N.J. and Hernaman, V. (2021). A catalogue of marine heatwave metrics and trends for the Australian region. Journal of Southern Hemisphere Earth Systems Science, 71, 284–302, https://doi.org/10.1071/ES21014
Vanderklift, M.A., and coauthors. (2020). The oceanography and marine ecology of Ningaloo, a world heritage area. In Oceanography and Marine Biology. Taylor & Francis. https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9780429351495-4/oceanography-marine-ecology-ningaloo-world-heritage-area-mathew-vanderklift-russell-babcock-peter-barnes-anna-cresswell-ming-feng-michael-haywood-thomas-holmes-paul-lavery-richard-pillans-claire-smallwood-damian-thomson-anton-tucker-kelly-waples-shaun-wilson
Wu, L., and coauthors. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Clim Change 2, 161–166, https://doi.org/10.1038/nclimate1353
This section draws upon data from version 5 of the Extended Reconstructed Sea Surface Temperature (ERSSTv5) dataset (Huang et al., 2017) (www.esrl.noaa.gov/psd/). The figure also draws upon version 2 of the Optimum Interpolation Sea Surface Temperature (OISST) dataset (Huang et al., 2020) (https://www.ncei.noaa.gov/products/optimum-interpolation-sst).
Hobday, A.J., and coauthors. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238, doi:10.1016/j.pocean.2015.12.014
Holbrook, N.J., Gupta, A.S., Oliver, E.C.J., Hobday, A.J., Benthuysen, J.A., Scannell, H.A., Smale, D.A. and Wernberg T. (2020). Keeping Pace with Marine Heatwaves as Oceans Warm. Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-020-0068-4
Spillman, C.M. and Smith, G.A. (2021). A new operational seasonal thermal stress prediction tool for coral reefs around Australia. Frontiers of Marine Science. https://doi.org/10.3389/fmars.2021.687833
Spillman, C.M., Smith, G.A., Hobday, A.J. and Hartog, J.R. (2021). Onset and decline rates of marine heatwaves: global trends, seasonal forecasts and marine management. Frontiers of Climate, https://doi.org/10.3389/fclim.2021.801217
Roemmich, D. and Gilson, J. (2009) The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82, 81-100. updated here: https://sio-argo.ucsd.edu/RG_Climatology.html
Liang, X., Liu, C., Ponte, R.M. and Chambers, D.P. (2021). A comparison of the variability and changes in global ocean heat content from multiple objective analysis products during the Argo period. Journal of Climate, 34(19), 7875-7895, https://doi.org/10.1175/JCLI-D-20-0794.1
Cheng, L., and coauthors. (2022). Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions. Advances in Atmospheric Sciences, 39, 373-385, https://doi.org/10.1007/s00376-022-1461-3
Wang, L., Lyu, K., Zhuang, W., Zhang, W., Makarim, S. and Yan, X.H. (2021). Recent shift in the warming of the Southern Oceans Modulated by decadal climate variability. Geophysical Research Letters, 48(3), e2020GL090889, https://doi.org/10.1029/2020GL090889
Rathore, S., Bindoff, N.L., Phillips, H.E. and Feng, M. (2020). Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nature communications, 11(1), 1-8, https://doi.org/10.1038/s41467-020-15754-3
Bagnell, A. and DeVries, T. (2021). 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nature Communications, 12(1), 1-10, https://doi.org/10.1038/s41467-021-24472-3
Johnson, G.C. and Lyman, J.M. (2020). Warming trends increasingly dominate global ocean. Nature Climate Change, 10(8), 757-761, https://doi.org/10.1038/s41558-020-0822-0
Johnson, G.C., Cadot, C., Lyman, J.M., McTaggart, K.E. and Steffen, E.L. (2020). Antarctic bottom water warming in the Brazil Basin: 1990s through 2020, from WOCE to Deep Argo. Geophysical Research Letters, 47(18), e2020GL089191, https://doi.org/10.1029/2020GL089191
Meyssignac, B., and coauthors. (2019). Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00432
Purkey, S.G., Johnson, G.C., Talley, L.D., Sloyan, B.M., Wijffels, S.E., Smethie, W., Mecking, S., & Katsumata, K. (2019). Unabated Bottom Water Warming and Freshening in the South Pacific Ocean. Journal of Geophysical Research: Oceans, 124, 1778-1794, https://doi.org/10.1029/2018JC014775
von Schuckmann, K. and coauthors. (2020). Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data, 12, 2013-2041, https://doi.org/10.5194/essd-12-2013-2020
Woods Hole Oceanographic Institute is cited in contributing to the time-series in the first figure, as Susan Wijffels has contributed to the methodology.
Scripps Institute of Oceanography (SIO) is cited as they are the custodians of the Roemmich and Gilson gridded Argo climatology.
Abdalla, S., and coauthors. (2021). Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 68, 319-363, https://doi.org/10.1016/j.asr.2021.01.022
Agarwal, N., Jungclaus, J.H., Köhl, A., Mechoso, C.R. and Stammer, D. (2015). Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environmental Research Letters, vol. 10, no. 7, pp. 1–8, https://doi.org/10.1088/1748-9326/10/7/074008
Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S. and Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters,39(19), p. L19602. https://doi.org/10.1029/2012GL053055
Burgette, R.J., Watson, C.S., Church, J.A., White, N.J., Tregoning, P. and Coleman, R. (2013). Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophysical Journal International, 194(2), 719–736. https://doi.org/10.1093/gji/ggt131
Chen, X., Zhang, X., Church, J.A., Watson, C.S., King, M.A., Monselesan, D., Legresy B. and Harig, C. (2017). The increasing rate of global mean sea-level rise during 1993-2014. Nature Climate Change 7, 492-495, https://doi.org/10.1038/nclimate3325
Church, J.A., Hunter, J.R., McInnes, K.L. and White, N.J. (2006). Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Met. Mag. 55 (2006) 253-260. https://www.johnroberthunter.org/science/home_prof/papers/AMM_Church_et_al_2006.pdf
Church, J.A. and White, N.J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics,32(4-5), 585–602. https://doi.org/10.1007/s10712-011-9119-1
Fasullo, J.T., Boening, C., Landerer, F.W. and Nerem, R.S. (2013) Australia’s unique influence on global sea level in 2010-2011. Geophysical Research Letters,40(16), 4368–4373. https://doi.org/10.1002/grl.50834
Featherstone, W.E., Penna, N.T., Filmer, M.S. and Williams, S.D.P. (2015). Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 120(10), 7004–7014. https://doi.org/10.1002/2015JC011295
Hinkel, J., and coauthors. (2019). Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth’s Future, 7(3), 320 – 327. https://doi.org/10.1029/2018EF001071
Hague, B.S., Murphy, B.F., Jones, D.A. and Taylor, A.J. (2019). Developing impact-based thresholds for coastal inundation from tide gauge observations. Journal of Southern Hemisphere Earth Systems Science, 69, 252-272. DOI:10.1071/ES19024
Hague, B.S, McGregor, S., Murphy, B.F., Reef, R. and Jones, D.A. (2020). Sea-Level Rise Driving Increasingly Predictable Coastal Inundation in Sydney, Australia. Earth’s Future. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020EF001607
Hague, B.S., Jones, D.A., Jakob, D., McGregor, S. and Reef, R. (2022). Australian coastal flooding trends and forcing factors. Earth’s Future, 10, e2021EF002483 https://doi.org/10.1029/2021EF002483
Hönisch, B., and coauthors. (2012). The Geological Record of Ocean Acidification. Science, 335, 1058-1063, https://doi.org/doi:10.1126/science.1208277
Jevrejeva, S., Moore, J.C., Grinsted, A. and Woodworth, P.L. (2008). Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters,35(8), L08715. https://doi.org/10.1029/2008GL033611
Masters, D., Nerem, R.S., Choe, C., Leuliette, E., Beckley, B., White, N. and Ablain, M. (2012). Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2. Marine Geodesy, 35(sup 1), 20–41. https://doi.org/10.1080/01490419.2012.717862
McInnes, K.L., Church, J.A., Monselesan, D., Hunter, J.R., O’Grady, J.G., Haigh, I.D. and Zhang, X. (2015). Information for Australian Impact and Adaptation Planning in response to Sea-level Rise, Australian Meteorological and Oceanographic Journal, 65:1, 127–149. DOI:10.22499/2.6501.009
Palmer, M. D., Domingues, C.M., Slangen, A.B.A. and Dias, F.B. (2021). An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. Environ. Res. Lett., 16, 044043. https://doi.org/10.1088/1748-9326/abdaec
Ray, R.D. and Douglas, B.C. (2011). Experiments in reconstructing twentieth-century sea levels. Progress in Oceanography, 91(4), 496–515. https://doi.org/10.1016/j.pocean.2011.07.021
Rignot, E., Velicogna, I., Van Den Broeke, M.R., Monaghan, A. and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5), p. L05503. https://doi.org/10.1029/2011GL046583
Royston, S., Watson, C.S., Legrésy, B., King, M.A., Church, J.A. and Bos, M.S. (2018). Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise. Journal of Geophysical Research: Oceans, 123(3), 1978–1993. https://doi.org/10.1002/2017JC013655
Slangen, A.B.A., Church, J.A., Agosta, C., Fettweis, X., Marzeion, B., and Richter, K. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Climate Change, 6, 701-705, https://doi.org/10.1038/nclimate2991
Wang, J., Church, J.A., Zhang, X., & Chen, X. (2021). Reconciling global mean and regional sea level change in projections and observations. Nature Communications, 12, 990, https://doi.org/10.1038/s41467-021-21265-6
Wang, J., Church, J.A., Zhang, X., Gregory, J.M., Zanna, L. and Chen, X. (2021). Evaluation of the local sea-level budget at tide gauges since 1958. Geophysical Research Letters, 48, e2021GL094502. https://doi.org/10.1029/2021GL094502
Wang, J., Church, J. A., Zhang, X., & Chen, X. (2024). Improved sea-level reconstruction from 1900 to 2019. Journal of Climate. https://doi.org/10.1175/JCLI-D-23-0410.1
Watson, C.S., White, N.J., Church, J.A., King, M.A., Burgette, R.J. and Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 5(6), 565–568. https://doi.org/10.1038/nclimate2635
WCRP Global Sea Level Budget Group (2018). Global sea-level budget 1993–present. Earth Syst. Sci. Data, 10, 1551-1590, https://doi.org/10.5194/essd-10-1551-2018
White, N.J., and coauthors. (2014). Australian sea levels-trends, regional variability and influencing factors. Earth-Science Reviews, 136, 155-174. https://doi.org/10.1016/j.earscirev.2014.05.011
Wijffels, S., and coauthors. (2018). A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): seasonal variability and trends around Australasia and New Zealand revisited. Journal of Marine Systems, 87, 156-196. https://doi.org/10.1016/j.jmarsys.2018.07.005
Woolworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A. and Gehrels, W.R. (2008). Evidence for the accelerations of sea level on multi-decade and century timescales. International Journal of Climatology, 29(6), 777-789. https://doi.org/10.1002/joc.1771
Zhang, X. and Church, J.A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701. https://doi.org/10.1029/2012GL053240
Zhang, X., Church, J.A., Monselesan, D. and McInnes, K.L. (2017). Sea level projections for the Australian region in the 21st century. Geophysical Research Letters, 44(16), 8481–8491. https://doi.org/10.1002/2017GL074176
The first figure includes reconstructions from CSIRO (Wang et al., 2024) and Palmer et al. (2021), and satellite altimetry data from NASA/JPL (https://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V42).
Satellite altimetry data for the second figure are drawn from the NOAA/NESDIS/STAR satellite altimetry dataset (https://www.star.nesdis.noaa.gov/socd/lsa/).
Information about satellite altimetry calibration and validation can be accessed at https://imos.org.au/facility/satellite-remote-sensing/satellite-altimetry-calibration-and-validation
Comeau, S., Cornwall, C.E., DeCarlo, T.M., Doo, S.S., Carpenter, R.C., & McCulloch, M.T. (2019). Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nature Climate Change, 9, 477-483, https://doi.org/10.1038/s41558-019-0486-9
Doney, S. C., Busch, D. S., Cooley, S. R., Kroeker, K. J. (2020). The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities., Annual Review of Environment and Resources 2020 45:1, 83-112. https://doi.org/10.1146/annurev-environ-012320-083019
Fabricius, K.E., Neill, C., Van Ooijen, E., Smith, J. N., & Tilbrook, B. (2020). Progressive seawater acidification on the Great Barrier Reef continental shelf. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75293-1
Gregor, L. and Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification, Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, Accessed 22 April 2024.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Williams, B. (2012) The geological record of ocean acidification. Science, 335(6072), 1058–1063. https://doi.org/10.1126/science.1208277
Hurd, C. L., Lenton, A., Tilbrook, B., & Boyd, P. W. (2018) Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change. https://doi.org/10.1038/s41558-018-0211-0
IPCC (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Portner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp. https://doi.org/10.1017/9781009157964
James, N.P. and Bone Y. (2011) Neritic Carbonate Sediments in a Temperate Realm: Southern Australia, Sringer Science, pp. 454, Springer Dordrecht Netherlands, ISBN: 978-90-48-9288-5, https://doi.org/10.1007/978-90-481-9289-2
Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019) Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 18624. https://doi.org/10.1038/s41598-019-55039-4
Lenton A., Tilbrook B., Matear R.J., Sasse T, Nojiri Y (2016) Historical reconstruction of ocean acidification in the Australian region. Biogeosciences, 13, 1753-1765 https://doi.org/10.5194/bg-13-1753-2016
Mongin, M., and coauthors. (2016). The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 7, 10732, https://doi.org/10.1038/ncomms10732
Smith, J. N., Mongin, M., Thompson, A., Jonker, M. J., De’ath, G., & Fabricius, K. E. (2020) Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. Global Change Biology, 26(4), 2149–2160. https://doi.org/10.1111/gcb.14985
Sunday, J.M., and coauthors. (2017). Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 7, 81-85, https://doi.org/10.1038/nclimate3161
Sutton, A.J., and coauthors. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13, 5065-5083, https://doi.org/10.5194/bg-13-5065-2016
Tilbrook, B., and coauthors. (2020) Ocean acidification. In Richardson A.J, Eriksen R, Moltmann T, Hodgson-Johnston I, Wallis J.R. (Eds). State and Trends of Australia’s Ocean Report. https://doi.org/10.26198/5e16a38849e78
The figure is based on the OceanSODA-ETHZ dataset (Gregor and Gruber, 2021).
Abram, N.J., and coauthors. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2, 8, https://doi.org/10.1038/s43247-020-00065-8
Cavalieri, D.J., Parkinson, C.L., Gloersen, P. and Zwally, H. J. (1996). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/8GQ8LZQVL0VL
Hobbs, W.R., Massom, R., Stammerjohn, S., Reid, P., Williams, G. and Meier, W. (2016). A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143. https://doi.org/10.1016/j.gloplacha.2016.06.008
Kusahara, K., Reid, P., Williams, G.D., Massom, R. and Hasumi, H. (2018). An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environmental Research Letters, 13(8). https://doi.org/10.1088/1748-9326/aad624
Liang, D., Guo, H., Zhang, L., Cheng, Y., Zhu, Q. and Liu, X. (2021). Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine. Remote Sensing of Environment, 256, 112318. https://doi.org/10.1016/j.rse.2021.112318
Lim, E.-P., and coauthors. (2021). The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bulletin of the American Meteorological Society, 102, E1150-E1171, https://doi.org/10.1175/BAMS-D-20-0112.1
Maslanik, J. and Stroeve, J. (1999). updated daily: Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations. National Snow and Ice Data Center, Boulder, CO, digital media. Retrieved from https://doi.org/10.5067/YTTHO2FJQ97K.
Massom, R.A., Scambos, T.A., Bennetts, L.G., Reid, P., Squire, V.A. and Stammerjohn, S.E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389. https://doi.org/10.1038/s41586-018-0212-1
Mazloff, M., and coauthors. (2017). Southern Ocean [in ’State of the Climate in 2016’]. Bulletin of the American Meteorological Society, 98(8), S166–S167. https://www.researchgate.net/publication/319069239_Southern_Ocean_in_State_of_the_Climate_in_2016
Meehl, G.A., Arblaster, J.M., Chung, C.T.Y., Holland, M.M., DuVivier, A., Thompson, L., Yang, D., and Bitz, C.M. (2019). Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10, 14, https://doi.org/10.1038/s41467-018-07865-9
Meredith, M., and coauthors. (2019). Polar Regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, … W. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf
Noble, T.L., and coauthors. (2020). The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 58, e2019RG000663, https://doi.org/10.1029/2019RG000663
Owens, I. and Zawar-Reza, P. (2015). Weather and Climate. In D. Liggett, B. Storey, Y. Cook, & V. Meduna (Eds.), Exploring the Last Continent: An Introduction to Antarctica (pp. 91–114). Springer International Publishing. https://doi.org/10.1007/978-3-319-18947-5_6
Purich, A. and England, M.H. (2019). Tropical Teleconnections to Antarctic Sea Ice During Austral Spring 2016 in Coupled Pacemaker Experiments. Geophysical Research Letters, 46(12), 6848–6858. https://doi.org/10.1029/2019GL082671
Reid, P.A. and Massom, R.A. (2022). Change and variability in Antarctic coastal exposure, 1979–2020. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28676-z
Reid, P., S. Stammerjohn, R. A. Massom, S. Barreira, T. Scambos, and J. L. Lieser, 2022: Sea ice extent, concentration, and seasonality [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc. 103 (8), S325–S329, https://doi.org/10.1175/2022BAMSStateoftheClimate.1
Stammerjohn, S. and Maksym, T. (2017). Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In Sea Ice (pp. 261–289). https://doi.org/10.1002/9781118778371.ch10
Teder, N., Bennetts, L., Reid, P. and Massom, R. (2022). Sea ice-free corridors for large swell to reach Antarctic ice shelves. Environmental Research Letters. Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/ac5edd
van Ommen, T.D. and Morgan, V. (2010). Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nature Geoscience, 3(4), 267–272. https://doi.org/10.1038/ngeo761
Vance, T.R., Roberts, J.L., Plummer, C.T., Kiem, A.S. and van Ommen, T.D. (2015). Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophysical Research Letters, 42(1), 129–137. https://doi.org/10.1002/2014GL062447
Wille, J.D., Favier, V., Dufour, A., Gorodetskaya, I.V, Turner, J., Agosta, C. and Codron, F. (2019). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911–916. https://doi.org/10.1038/s41561-019-0460-1
Yuan, X., Kaplan, M.R. and Cane, M.A. (2018). The interconnected global climate system-a review of tropical-polar teleconnections. Journal of Climate, 31(15), 5765–5792. https://doi.org/10.1175/JCLI-D-16-0637.1
The assessment of the contribution of ice sheet melting to global sea level rise draws from IPCC AR6 Table 9.5.
Data sources for the figures are as follows:
Derek, N., Krummel, P.B. and Cleland, S.J. (Eds) (2014). Baseline atmospheric program Australia 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research. http://www.bom.gov.au/inside/cgbaps/baseline.shtml
Etminan, M., Myhre, G., Highwood, E.J. and Shine, K.P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12,614-12,623. https://doi.org/10.1002/2016GL071930
Forster, P.M., and coauthors (2024). Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data, https://doi.org/10.5194/essd-2024-149
Friedlingstein, P., and coauthors. (2023). Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023
Gohar, L. K., and Shine, K. P. (2007). Equivalent CO2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311. https://doi.org/10.1002/wea.103
IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf
IPCC (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, DOI:10.59327/IPCC/AR6-9789291691647.001
Graven, H., and coauthors. (2017). Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev., 10, 4405-4417https://doi.org/10.5194/gmd-10-4405-2017
Jackson, R.B. and coauthors. (2024). Human activities now fuel two-thirds of global methane emissions. Env. Res. Lett., 19, 101002, https://doi.org/10.1088/1748-9326/ad6463
Krummel, P.B., and coauthors. (2014). The AGAGE in situ program for non-CO2 greenhouse gases at Cape Grim, 2009-2010, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 56-70. http://hdl.handle.net/102.100.100/485886?index=1
Langenfelds, R.L., Steele, L.P., Gregory, R.L., Krummel, P.B., Spencer, D.A. and Howden, R.T. (2014). Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, 45-49. https://nla.gov.au/nla.obj-1908473834/view
Levin, I., and coauthors. (2010). Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus, Series B: Chemical and Physical Meteorology, vol. 62, no. 1, 26–46. https://doi.org/10.1111/j.1600-0889.2009.00446.x
Levin, I., Hammer, S., Kromer, B., Preunkert, S., Weller, R., and Worthy, D.E. (2022). Radiocarbon in global tropospheric carbon dioxide. Radiocarbon, 64, 781-791, https://doi.org/10.1017/RDC.2021.102
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., Smith, A., & Elkins, J. (2006). Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters, 33, https://doi.org/10.1029/2006GL026152
Machida, T., Nakazawa, T., Fujii, Y., Aoki, S., & Watanabe, O. (1995). Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophysical Research Letters, 22, 2921-2924, https://doi.org/10.1029/95GL02822
Meinshausen, M., and coauthors. (2017). Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev., 10, 2057-2116, https://doi.org/10.5194/gmd-10-2057-2017
Park, S., and coauthors. (2012). Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience, 5, 261-265, https://doi.org/10.1038/ngeo1421
Prinn, R.G., and coauthors. (2018). History of Chemically and Radiatively Important Atmospheric Gases from the Advanced Global Atmospheric Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985-1018. https://doi.org/10.5194/essd-10-985-2018
Rubino, M., and coauthors. (2013). A revised 1000 year atmospheric C-CO2 record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 118, 8482-8499, https://doi.org/10.1002/jgrd.50668
Rubino, M., and coauthors. (2019). Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data, 11, 473-492, https://doi.org/10.5194/essd-11-473-2019
Saunois, M., and coauthors. (2020). The Global Methane Budget 2000–2017. Earth Syst. Sci. Data, 12, 1561-1623, https://doi.org/10.5194/essd-12-1561-2020
Smith, C., Z.R.J. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M.D. Palmer, and Watanabe, M. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Available from https://www.ipcc.ch/
Steele, P., and coauthors. (2014). Baseline carbon dioxide monitoring. In, Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 39-41. http://www.bom.gov.au/inside/cgbaps/baseline/Baseline_2009-2010.pdf
Sturrock, G.A., Etheridge, D.M., Trudinger, C.M., Fraser, P.J., and Smith, A.M. (2002). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species. Journal of Geophysical Research: Atmospheres, 107, ACH 12-11-ACH 12-14, https://doi.org/10.1029/2002JD002548
Tian, H., and coauthors. (2024). Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data, 16, 2543-2604, https://doi.org/10.5194/essd-16-2543-2024
Trudinger, C.M., Etheridge, D.M., Rayner, P.J., Enting, I.G., Sturrock, G.A., and Langenfelds, R.L. (2002). Reconstructing atmospheric histories from measurements of air composition in firn. Journal of Geophysical Research: Atmospheres, 107, ACH 15-11-ACH 15-13, https://doi.org/10.1029/2002JD002545
Villalobos Y. and coauthors (2023). A comprehensive assessment of anthropogenic and natural sources and sinks of Australasia’s carbon budget. Global Biogeochemical Cycles, 37, e2023GB007845. https://doi.org/10.1029/2023GB007845
Data in figures in the Greenhouse Gases section are from in situ observations by CSIRO and the Bureau of Meteorology (commencing Kennaook/Cape Grim, Tasmania, 1976) and the Advanced Global Atmospheric Gases Experiment (Krummel, 2014; Prinn, 2018) (global, including Kennaook/Cape Grim, commencing 1978) and from measurements of flask air samples (global, including Kennaook/Cape Grim, commencing 1992), the Kennaook/Cape Grim Air Archive (1978-2023) at the CSIRO GASLAB (Aspendale, Melbourne), and air from Antarctic firn (compacted snow) and ice cores measured at CSIRO GASLAB and ICELAB (Aspendale, Melbourne).
The Global Carbon Budget figure is adapted from Friedlingstein, P., and coauthors. (2023). https://doi.org/10.5194/essd-15-5301-2023
The Australian Carbon Budget figure is from the NESP Climate Systems Hub and Global Carbon Project, with data as described in Villalobos Y. and coauthors (2023). https://doi.org/10.1029/2023GB007845
Knutson, T., and coauthors. (2020). Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society 101, 3, E303-E322. https://doi.org/10.1175/BAMS-D-18-0194.1
Information is drawn from the following IPCC reports, notably AR6:
bom.gov.au/state-of-the-climate/ | csiro.au/state-of-the-climate